

new model outputs

Ingrid Etchevers, Ryad El Khatib, Yann SeityGMAP

 You want to code a new model output, a new diagnostic in the model physics

But ...

Are you sure you need to code this diagnostic in physics?

Make the difference between post-processing fields from existing ingredients already in historical files and something inexistant in historical files

First question : why...code my new output in physics part?

Do you need variables only from physics ?

Do you need model levels variables?

 Do you want a variable calculated on our hour (less or more) ? As max, min, average, etc...

If your answers are no

 See Jure's lecture about « how to add new fullpos fields »

Well that may not be sufficient ...

Jure's talk will not deal about surface fields post-processing

Tip: consider a well-known post-processing fields, track it through the code, and mimic what has been done for it.

• If one of your answers is yes

Listen this lecture

Example : visibilities code

Decompose the job in steps First step: define your fields

Which variables at the output of the model ?

VISICLD: visibility due to fog

VISIHYD: visibility due to rainfall

Construct your fields (setup)

- What constants / parameters do you need ? (locate where to do the setup computation)
- Height of visibility
- coefficients applied to the contents of hydrometeors
- In what namelist? New namelist or existing one?
- Do not forget YOM and SETUP associated with NAM

NB: YOM... usage: has changed since OOP;-)

• Do not forget activation keys! (Do not force the others to compute something they don't want)

Construct your fields (setup)

• Should we create a structure?

It's fashionnable ... but don't create over-complexity

• Maybe ... to code « object » in the spirit of OOPS Variables belonging to an existing structure Or new structure in an existing superstructure?

• You can code setup and make a first compilation Setup prints are there to verify the setup is OK!

Coding in Physics : « method »

- Where to code the new output or diagnostic? Consider the variables interaction. Minimize complexity. Maximize modularity.
- In An existing subroutine?

 If small code, perhaps not ... but lost of modularity
- In A new specific subroutine?
 If large piece of code, probably yes!

For visibilities, in arocldia.F90

Coding in Physics

 After, go up the new variables in aplpar.F90 and apl_arome.F90, then in mf_phys.F90 and cpg.F90

```
Because so is the calling tree :
Cpg
mf_phys
if (arpege) call aplpar
if (arome) call apl_arome
```

You can try a new compilation

Final calculation

- If you want a variable calculated on our hour, as max, min, average, etc Can't be calculated from 1 historical file!
- You have to code this calculation in cpxfu.F90 and co or cpcfu.F90 and co
- You have to provide variables to cpg_dia.F90 from cpg.F90
- Do not forget activation keys!
- You are ready to add your variables in the postprocessing

Final calculation

Sure your new model fields go to historical files?
Can you post-process offline?

Météo-France

nom.prénom@meteo.fr

www.meteofrance | meteofrance