

Collection and assimilation of Mode-S MRAR observations in Slovenia

Benedikt Strajnar, ARSO

Outline

- What Mode-S observations are?
- Validation study
- Pre-processing
- Data assimilation experiments
- Conclusions

Mode-S system

Primary radars

- a pulse is reflected back by the aircraft, enabling its position to be computed
- Secondary radar systems
 - transponder on board the aircraft transmits its identity, as well as the aircraft's altitude
- Mode-S
 - selective communication between airframe and ground station (possibility to transmit various 56-bit data registers, up to 5 for a standard system).

Types of Mode-S met. data

J 1			
	name	MODE-S MRAR Meteorological routine air report	MODE-S EHS Enhanced surveillance (report)
	data	(BDS 4,4) - met. routine air report wind speed, direction, temperature, turbulence, humidity (BDS 4,5) - met. hazard report (turbulence, wind shear, microburst, icing)	 (BDS 4,0) selected vertical intent (selected altitude) (BDS 5,0) track and turn report - roll angle, true track angle and rate, ground speed and true air speed (BDS 6,0) heading and speed report indicated air speed and mach, barometric altitude rate, magnetic heading
	type	Direct data	Indirect (temperature) data
	rep. by	around 5 % of all Mode-S	all Mode-S equipped aircraft

Strajnar 2012, Hrastovec and Solina

the transponder configuration)

equipped aircraft (depends on

de Hann 2011, de Haan and Stoffelen 2012

Mode-S data from Ljubljana airport

- ½ of all data from national carrier (Adria Airways)
- Mostly smaller airplanes (CRJ) and corporate jets (some possibly problematic), little data from bigger Airbus and Boeing airplanes

Validation (1)

- Comparison with AMDAR and radiosondes over 9 months
- Match with AMDAR (on the same aircraft) very good (std. difference 0.35 K,0.8 m/s and 10 deg.)
- No significant bias

Validation (2)

- Comparison with hi-res radiosondes from Ljubljana, Zagreb, Zadar and Udine
- Std. deviations larger (1.7 K,3 m/s and 25 deg.)
- But still no significant bias

Preprocessing and quality control

- Temporal smoothing (12s / 60 s)
- Whitelist approach
 - Generated from comparison of Mode-S with operational NWP over a period of 22 months
 - Airplanes with high mean or sd with respect to model flagged
- Coding to OBSOUL format

Assimilation experiments - model

- ALARO model cycle 38t1
- 4.4 km resolution, 87 levels
- 3-hourly 3d-Var data assimilation
- SYNOP+AMP, TEMP, AMDAR, AMV, NOAA, METOP, MSG
- ECMWF LBC
- 2 evaluation periods
 - ► 18 Dec 2013 10 Jan 2014
 - ► 18 Jun 2013 10 Jul 2013

Winter period - impact on analysis

Temperature inversions locally much better captured in the analysis due to assimialted Mode-S

Winter period – Impact on forecasts

Temperature RMSE reduction Wind speed RMSE reduction (same for dir.

Summer period – impact on forecasts

Temperature RMSE reduction

Wind speed RMSE reduction

Severe freezing rain case (1)

end of January 2014

VERTIKALNI KRAJEVNI PRESEK 01.02.2014 06:00 Napoved modela ALADIN/SI DA: hitrost vetra (m/s), horizontalni veter

Severe freezing rain case (2)

Severe freezing rain case (3)

HORIZONTAL CROSS-SECTION 01.02.2014 19:00

NOVA GORICA - CELJE Model ALADIN/SI DA: , rain, snow (mg/kg)

HORIZONTAL CROSS-SECTION

01.02.2014 19:00 NOVA GORICA - CELJE Model ALADIN/SI DA: , rain, snow (mg/kg)

temperature bias

Conclusions

- Mode-S MRAR are (on average) very good observations
- Only a small percentage of all aircraft responding with temperature and winds
- Quality control very important
- Clear impact on analysis and short-range forecasts even with data from a single radar
 - Longer impact in winter (inversions)

Future

- Use Mode-S MRAR operationally
- Automatic/adaptive creation of whitelists (important to accept new aircraft)
- New Mode-S radar sites (Korlape in Austria, another near Ljubljana
- Promote Mode-S MRAR
- Use Mode-S EHS (winds)

