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Validation tool

Mitraillette : what, how ?

Mitraillette : a collection of jobs, NCONF ∈ {1, 401, 501, 601, 901, 923,
927} with various geometries & model options.

How it works :

each test job has a proto-job (= template of script)
namelists for each job are stored for each cycle
there is a building script (mitraillette.x) that builds the actual
scripts from proto-jobs, cycle and binaries to be used
input resources are taken from almost-hardcoded paths in the proto-jobs

Procedure for the user :

1 cd to mitraillette directory
2 define a list of {job ⇔ binary} to be used, in a file
3 run mitraillette.x, which creates a new incremental directory

<cycle>/mitraille_nnnn , in which are built up the scripts for each
job

4 run the first job ; if not crashed, it triggers the second one, and so on
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Validation tool

Just a bit of nomenclature
All jobs are named as a series of underscore-separated abbreviations, which define
their content.
The first two are mandatory :

1 discriminates ECMWF, Arpege and LAM :

GE : Global-ECMWF = IFS
GM : Global-MF = Arpege
L1 : LAM 1D model (≈ MUSC)
L2 : LAM 2D vertical-plan model
L3 : LAM 3D model

2 type of conf :

FCST : forecast
C923 : clim files conf 923
FPOF : fullpos (offline)
C601 : singular vectors
...
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Validation tool

Just a bit of nomenclature
Following parts of name specify options to be tested, e.g.

HYD vs. NHE : hydrostatic vs. elastic NH

SL2/SL3/EUL : semi-lagrangian 2/3 tsteps, eulerian

ADIAB/ARPPHYISBA/AROPHYSFEX : adiabatic, Arpege physics, Arome
physics with Surfex

AROMALP1300/TL798S : 1.3km Alps domain, stretched T798 gauss

VFE/VFD : vertical finite elements/differences

PCC/PCF : cheap/full Predictor-Corrector scheme

...



Mitraillette checkpack, ciboulette Exercise

A raw tool

Up to the user

to launch next jobs when chaining is broken by crashed job(s)

to compare the outputs of jobs to a reference : assert bit-reproducibility (of
norms in listing), or check differences (in files) and understand where they
come from

to deactivate chaining when re-running failed jobs

⇒ ciboulette/checkpack :
towards more ergonomy and automated sanity checks

(NB : Mitraillette/checkpack/ciboulette will be obsolete in a few cycles
↪→ new validation system davaï — cf. my presentation at ALADIN/HIRLAM Wk

Madrid 2019 / AG GMAP 2019)
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checkpack

checkpack

checkpack.py takes :
a cycle

a gmkpack compiled pack

a list of jobs (pre-defined lists exist)

and then :

run Mitraillette (build jobs)

launch the jobs with a mini-scheduler, more flexible than original chaining

It’s only a handy wrapper around Mitraillette.

If you also give a reference, where to find outputs of Mitraillette execution on the
reference cycle, it will trigger automatic comparisons :

⇒ ciboulette
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ciboulette

ciboulette
ciboulette takes

test and reference Mitraillette job(s) output listings

and then compares norms found in listings for each job. Norms comparison
consists in the number of different digits : 0 is bit-reproducibility, 15 is totally
different fields.
As output, it produces :

for each job, a norms comparison file, where norms are compared step by
step and field by field

a graphical summary of all jobs, giving their worst norms comparison
(among steps & fields)
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Tutorial

Install helper for Mitraillette

1 add paths to checkpack/ciboulette toolbox (and vortex if not already in
paths), into $PYTHONPATH and $PATH :
⇒ cf. beaufix:∼mary/public/mocuba/_install_bull

2 execute mitraillette install helper :
mitraillette_install.py

which will install to $HOME/mitraillette
You can export MIT_INSTALL_DIR beforehand if you want to choose a
different directory.

NB : since Karim Yessad left, one should take mitraillette from P.Saez :
mitraillette_install.py –-from /home/gmap/mrpm/saez/mitraille

NB2 : Mitraillette is now maintained by H.Petithomme and P.Saez
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Tutorial

Test my pack

run a job on the pack I just compiled :
cd ∼/pack/planet_object
checkpack.py -c 46t1 -j mitraillette:L3_FCST_HYD_SL2_VFD_AROPHYSFEX_MAD
_AROMALP1300

or

checkpack.py -c 46t1 -j mit[...] -b ∼/pack/planet_object/bin/MASTERODB

to list the available jobs and job sets :
checkpack.py –-list_sets

run all jobs, and compare to reference outputs (in P.Saez directory) :
checkpack.py -c 46t1 -j mitraillette:all -r ∼saez/cy46t1

help : checkpack.py -h



Mitraillette checkpack, ciboulette Exercise

Tutorial

(Re-)generate ciboulette summary

The ciboulette comparison is also useable on a set of jobs already executed,
either natively using Mitraillette or with checkpack.

any generated job can be modified and re-ran individually with sbatch

re-generate summary for the bench mitraille_nnnn (implies to be in
$MIT_INSTALL_DIR) :
ciboulette.py cy46t1 ∼saez/mitraille/cy46 -t mitraille_nnnn -i

help : ciboulette.py -h
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Hands-in

1 install mitraillette/checkpack/ciboulette

2 make a pack on top of CY46T1

3 modify coupling/external/gpcou/esrlxt1.F90 :
replace α by α2 in computation of PGT1GMV relaxation

4 compile

5 check the pack on jobset mitraillette:dev, compared to
∼saez/mitraille/cy46t1
⇒ cf. ciboulette output

6 assume α2 was a bug, get back to α, recompile

7 re-run the job alone

8 re-build the ciboulette graphical output
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