
Technical validation of new developments and new
cycles : Mitraillette & checkpack

Alexandre Mary, Météo-France

Code training days, 2019 Sept. 9th - Toulouse

Outline

1 Mitraillette
Validation tool
A raw tool

2 checkpack, ciboulette
checkpack
ciboulette
Tutorial

3 Exercise
Hands-in

Mitraillette checkpack, ciboulette Exercise

Outline

1 Mitraillette
Validation tool
A raw tool

2 checkpack, ciboulette
checkpack
ciboulette
Tutorial

3 Exercise
Hands-in

Mitraillette checkpack, ciboulette Exercise

Validation tool

Mitraillette : what, how ?

Mitraillette : a collection of jobs, NCONF ∈ {1, 401, 501, 601, 901, 923,
927} with various geometries & model options.

How it works :

each test job has a proto-job (= template of script)
namelists for each job are stored for each cycle
there is a building script (mitraillette.x) that builds the actual
scripts from proto-jobs, cycle and binaries to be used
input resources are taken from almost-hardcoded paths in the proto-jobs

Procedure for the user :

1 cd to mitraillette directory
2 define a list of {job ⇔ binary} to be used, in a file
3 run mitraillette.x, which creates a new incremental directory

<cycle>/mitraille_nnnn , in which are built up the scripts for each
job

4 run the first job ; if not crashed, it triggers the second one, and so on

Mitraillette checkpack, ciboulette Exercise

Validation tool

Mitraillette : what, how ?

Mitraillette : a collection of jobs, NCONF ∈ {1, 401, 501, 601, 901, 923,
927} with various geometries & model options.

How it works :

each test job has a proto-job (= template of script)
namelists for each job are stored for each cycle
there is a building script (mitraillette.x) that builds the actual
scripts from proto-jobs, cycle and binaries to be used
input resources are taken from almost-hardcoded paths in the proto-jobs

Procedure for the user :

1 cd to mitraillette directory
2 define a list of {job ⇔ binary} to be used, in a file
3 run mitraillette.x, which creates a new incremental directory

<cycle>/mitraille_nnnn , in which are built up the scripts for each
job

4 run the first job ; if not crashed, it triggers the second one, and so on

Mitraillette checkpack, ciboulette Exercise

Validation tool

Mitraillette : what, how ?

Mitraillette : a collection of jobs, NCONF ∈ {1, 401, 501, 601, 901, 923,
927} with various geometries & model options.

How it works :

each test job has a proto-job (= template of script)
namelists for each job are stored for each cycle
there is a building script (mitraillette.x) that builds the actual
scripts from proto-jobs, cycle and binaries to be used
input resources are taken from almost-hardcoded paths in the proto-jobs

Procedure for the user :

1 cd to mitraillette directory
2 define a list of {job ⇔ binary} to be used, in a file
3 run mitraillette.x, which creates a new incremental directory

<cycle>/mitraille_nnnn , in which are built up the scripts for each
job

4 run the first job ; if not crashed, it triggers the second one, and so on

Mitraillette checkpack, ciboulette Exercise

Validation tool

Just a bit of nomenclature
All jobs are named as a series of underscore-separated abbreviations, which define
their content.
The first two are mandatory :

1 discriminates ECMWF, Arpege and LAM :

GE : Global-ECMWF = IFS
GM : Global-MF = Arpege
L1 : LAM 1D model (≈ MUSC)
L2 : LAM 2D vertical-plan model
L3 : LAM 3D model

2 type of conf :

FCST : forecast
C923 : clim files conf 923
FPOF : fullpos (offline)
C601 : singular vectors
...

Mitraillette checkpack, ciboulette Exercise

Validation tool

Just a bit of nomenclature
Following parts of name specify options to be tested, e.g.

HYD vs. NHE : hydrostatic vs. elastic NH

SL2/SL3/EUL : semi-lagrangian 2/3 tsteps, eulerian

ADIAB/ARPPHYISBA/AROPHYSFEX : adiabatic, Arpege physics, Arome
physics with Surfex

AROMALP1300/TL798S : 1.3km Alps domain, stretched T798 gauss

VFE/VFD : vertical finite elements/differences

PCC/PCF : cheap/full Predictor-Corrector scheme

...

Mitraillette checkpack, ciboulette Exercise

A raw tool

Up to the user

to launch next jobs when chaining is broken by crashed job(s)

to compare the outputs of jobs to a reference : assert bit-reproducibility (of
norms in listing), or check differences (in files) and understand where they
come from

to deactivate chaining when re-running failed jobs

⇒ ciboulette/checkpack :
towards more ergonomy and automated sanity checks

(NB : Mitraillette/checkpack/ciboulette will be obsolete in a few cycles
↪→ new validation system davaï — cf. my presentation at ALADIN/HIRLAM Wk

Madrid 2019 / AG GMAP 2019)

Mitraillette checkpack, ciboulette Exercise

A raw tool

Up to the user

to launch next jobs when chaining is broken by crashed job(s)

to compare the outputs of jobs to a reference : assert bit-reproducibility (of
norms in listing), or check differences (in files) and understand where they
come from

to deactivate chaining when re-running failed jobs

⇒ ciboulette/checkpack :
towards more ergonomy and automated sanity checks

(NB : Mitraillette/checkpack/ciboulette will be obsolete in a few cycles
↪→ new validation system davaï — cf. my presentation at ALADIN/HIRLAM Wk

Madrid 2019 / AG GMAP 2019)

Mitraillette checkpack, ciboulette Exercise

A raw tool

Up to the user

to launch next jobs when chaining is broken by crashed job(s)

to compare the outputs of jobs to a reference : assert bit-reproducibility (of
norms in listing), or check differences (in files) and understand where they
come from

to deactivate chaining when re-running failed jobs

⇒ ciboulette/checkpack :
towards more ergonomy and automated sanity checks

(NB : Mitraillette/checkpack/ciboulette will be obsolete in a few cycles
↪→ new validation system davaï — cf. my presentation at ALADIN/HIRLAM Wk

Madrid 2019 / AG GMAP 2019)

Mitraillette checkpack, ciboulette Exercise

Outline

1 Mitraillette
Validation tool
A raw tool

2 checkpack, ciboulette
checkpack
ciboulette
Tutorial

3 Exercise
Hands-in

Mitraillette checkpack, ciboulette Exercise

checkpack

checkpack

checkpack.py takes :
a cycle

a gmkpack compiled pack

a list of jobs (pre-defined lists exist)

and then :

run Mitraillette (build jobs)

launch the jobs with a mini-scheduler, more flexible than original chaining

It’s only a handy wrapper around Mitraillette.

If you also give a reference, where to find outputs of Mitraillette execution on the
reference cycle, it will trigger automatic comparisons :

⇒ ciboulette

Mitraillette checkpack, ciboulette Exercise

checkpack

checkpack

checkpack.py takes :
a cycle

a gmkpack compiled pack

a list of jobs (pre-defined lists exist)
and then :

run Mitraillette (build jobs)

launch the jobs with a mini-scheduler, more flexible than original chaining

It’s only a handy wrapper around Mitraillette.

If you also give a reference, where to find outputs of Mitraillette execution on the
reference cycle, it will trigger automatic comparisons :

⇒ ciboulette

Mitraillette checkpack, ciboulette Exercise

checkpack

checkpack

checkpack.py takes :
a cycle

a gmkpack compiled pack

a list of jobs (pre-defined lists exist)
and then :

run Mitraillette (build jobs)

launch the jobs with a mini-scheduler, more flexible than original chaining

It’s only a handy wrapper around Mitraillette.

If you also give a reference, where to find outputs of Mitraillette execution on the
reference cycle, it will trigger automatic comparisons :

⇒ ciboulette

Mitraillette checkpack, ciboulette Exercise

ciboulette

ciboulette
ciboulette takes

test and reference Mitraillette job(s) output listings

and then compares norms found in listings for each job. Norms comparison
consists in the number of different digits : 0 is bit-reproducibility, 15 is totally
different fields.
As output, it produces :

for each job, a norms comparison file, where norms are compared step by
step and field by field

a graphical summary of all jobs, giving their worst norms comparison
(among steps & fields)

Mitraillette checkpack, ciboulette Exercise

ciboulette

ciboulette
ciboulette takes

test and reference Mitraillette job(s) output listings
and then compares norms found in listings for each job. Norms comparison
consists in the number of different digits : 0 is bit-reproducibility, 15 is totally
different fields.

As output, it produces :

for each job, a norms comparison file, where norms are compared step by
step and field by field

a graphical summary of all jobs, giving their worst norms comparison
(among steps & fields)

Mitraillette checkpack, ciboulette Exercise

ciboulette

ciboulette
ciboulette takes

test and reference Mitraillette job(s) output listings
and then compares norms found in listings for each job. Norms comparison
consists in the number of different digits : 0 is bit-reproducibility, 15 is totally
different fields.
As output, it produces :

for each job, a norms comparison file, where norms are compared step by
step and field by field

a graphical summary of all jobs, giving their worst norms comparison
(among steps & fields)

Mitraillette checkpack, ciboulette Exercise

Tutorial

Install helper for Mitraillette

1 add paths to checkpack/ciboulette toolbox (and vortex if not already in
paths), into $PYTHONPATH and $PATH :
⇒ cf. beaufix:∼mary/public/mocuba/_install_bull

2 execute mitraillette install helper :
mitraillette_install.py

which will install to $HOME/mitraillette
You can export MIT_INSTALL_DIR beforehand if you want to choose a
different directory.

NB : since Karim Yessad left, one should take mitraillette from P.Saez :
mitraillette_install.py –-from /home/gmap/mrpm/saez/mitraille

NB2 : Mitraillette is now maintained by H.Petithomme and P.Saez

Mitraillette checkpack, ciboulette Exercise

Tutorial

Test my pack

run a job on the pack I just compiled :
cd ∼/pack/planet_object
checkpack.py -c 46t1 -j mitraillette:L3_FCST_HYD_SL2_VFD_AROPHYSFEX_MAD
_AROMALP1300

or

checkpack.py -c 46t1 -j mit[...] -b ∼/pack/planet_object/bin/MASTERODB

to list the available jobs and job sets :
checkpack.py –-list_sets

run all jobs, and compare to reference outputs (in P.Saez directory) :
checkpack.py -c 46t1 -j mitraillette:all -r ∼saez/cy46t1

help : checkpack.py -h

Mitraillette checkpack, ciboulette Exercise

Tutorial

(Re-)generate ciboulette summary

The ciboulette comparison is also useable on a set of jobs already executed,
either natively using Mitraillette or with checkpack.

any generated job can be modified and re-ran individually with sbatch

re-generate summary for the bench mitraille_nnnn (implies to be in
$MIT_INSTALL_DIR) :
ciboulette.py cy46t1 ∼saez/mitraille/cy46 -t mitraille_nnnn -i

help : ciboulette.py -h

Mitraillette checkpack, ciboulette Exercise

Outline

1 Mitraillette
Validation tool
A raw tool

2 checkpack, ciboulette
checkpack
ciboulette
Tutorial

3 Exercise
Hands-in

Mitraillette checkpack, ciboulette Exercise

Hands-in

1 install mitraillette/checkpack/ciboulette

2 make a pack on top of CY46T1

3 modify coupling/external/gpcou/esrlxt1.F90 :
replace α by α2 in computation of PGT1GMV relaxation

4 compile

5 check the pack on jobset mitraillette:dev, compared to
∼saez/mitraille/cy46t1
⇒ cf. ciboulette output

6 assume α2 was a bug, get back to α, recompile

7 re-run the job alone

8 re-build the ciboulette graphical output

	Mitraillette
	Validation tool
	A raw tool

	checkpack, ciboulette
	checkpack
	ciboulette
	Tutorial

	Exercise
	Hands-in

