Cloud and convection in Alaro-1

Royal Meteorological Institute of Belgium

Luc Gerard

4 April 2017

In essence CSD has MANY differences with 3MT

- + Triggering
- ≠ Plume model:
 - perturbation approach
 - organized entrainment
 - mesh fraction treatment and vertical variation
 - cond-evaporation treatment
- · Closure: mixed.
- External adaptations: Nc protection, Neq, revision of shallow cloud mass-flux-like scheme in TOUCANS, switch off cloud sedimentation and diffusion.
- Complete behaviour (see next slides)

In essence CSD has MANY differences with 3MT

- + Triggering
- ≠ Plume model:
 - perturbation approach
 - organized entrainment
 - mesh fraction treatment and vertical variation
 - cond-evaporation treatment
- Closure: mixed.
- External adaptations: Nc protection, Neq, revision of shallow cloud mass-flux-like scheme in TOUCANS, switch off cloud sedimentation and diffusion.
- Complete behaviour (see next slides)
 - ⇒ This required retuning the cloud scheme...

... and going across much trouble.

Sugrid scheme less active (complementarity)

no triggering, cloud can start as low as the surface

USL triggering ⇒ changed subgrid transport in lower layers

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

 $N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$ + a geometrical hypothesis implying a critical RH profile:

 $\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$

completed by protection of convective area

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical R11 profile.

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} (1 - N)$$

completed by protection of convective area

imposed mean $\overline{q_v}$ in clear part ? H is **not** a threshold of $\overline{q_t}/\overline{q_w}$

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical Ri i profile.

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} (1 - N)$$

completed by protection of convective area

imposed mean $\overline{q_v}$ in clear part ? H is **not** a threshold of $\overline{q_t}/\overline{q_w}$ $\triangle x$ dependency (?)

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical RH profile:

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$$

- completed by protection of convective area
- ⇒ water phase contents, latent heat conversion;

(Quaas, 2012)

 $H \neq$ Sundqvist et al. 1989: homogeneous pdf of q_t

$$egin{aligned} \triangle q &= (1-H) \overline{q_{
m sat}} \ \Rightarrow (1-N)^2 &= rac{1-RH}{1-H} \end{aligned}$$

here
$$\triangle q = \overline{q_t} + (1 - 2H)\overline{q_w}$$

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical RH profile:

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$$

- completed by protection of convective area
- ⇒ water phase contents, latent heat conversion;

source for microphysics \Rightarrow precipitation (q_r , q_s , fluxes).

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

 $\boldsymbol{+}$ a geometrical hypothesis implying a critical RH profile:

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$$

- completed by protection of convective area
 water phase contents latent heat conversions
- ⇒ water phase contents, latent heat conversion;

```
source for microphysics = precipitation(q_r, q_s, fluxes).
```

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical RH profile:

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$$

- completed by protection of convective area
- ⇒ water phase contents, latent heat conversion;

source for microphysics =
$$(precipitation)(q_r, q_s, fluxes)$$
.

final suspended $q_c <$,

XR adjustment is broken!

- Prognostic cloud condensates (q_i, q_i):
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical RH profile:

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$$

- completed by protection of convective area
- ⇒ water phase contents, latent heat conversion;
- Radiative suspended cloud condensates:
 - (stratiform) diagnosed from oversaturation wrt RH profile

- (convective)
$$q_{cc}$$
 diagnosed from N_c^- ,

- cloud fraction
$$q_{cc}$$
 diagnosed from N_c ,

$$q_{cc} = XR'^{-1}[N_c^-, \overline{q_t}, \overline{q_w}]$$

$$N = XR'[q_{cs} + q_{cc}, \overline{q_t}, \overline{q_w}]$$

 $q_{cs} = \overline{q_t}' - H'(z)\overline{q_{sat}}$

⇒ radiative heating/cooling, output cloudiness.

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical RH profile:

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$$

- completed by protection of convective area
- ⇒ water phase contents, latent heat conversion;
- Radiative suspended cloud condensates:
 - (stratiform) diagnosed from oversaturation wrt RH profile
 - (convective) q_{cc} diagnosed from N_c^- ,

$$\begin{aligned} q_{cs} &= \overline{q_t}' - H'(z) \overline{q_{sat}} \\ q_{cc} &= XR'^{-1} [N_c^-, \overline{q_t}, \overline{q_w}] \end{aligned}$$

cloud fraction

$$N = XR'[q_{cs} + q_{cc}, \overline{q_t}, \overline{q_w}]$$

⇒ radiative heating/cooling, output cloudiness.

- Prognostic cloud condensates (q_i, q_l) :
 - cloud scheme combining Xu & Randall (1996) formula

$$N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$$

+ a geometrical hypothesis implying a critical RH profile:

$$\overline{q_v} = \overline{q_w} \cdot N + H[z, \text{phase}, \triangle x] \cdot \overline{q_w} \cdot (1 - N)$$

- completed by protection of convective area
- ⇒ water phase contents, latent heat conversion;
- Radiative suspended cloud condensates:
 - (stratiform) diagnosed from oversaturation wrt RH profile $q_{cs} = \overline{q_{t'}} H'(z) \overline{q_{at}}$
 - (convective) q_{cc} diagnosed from N_c^- ,

$$q_{cc} = XR'^{-1}[N_c^-, \overline{q_t}, \overline{q_w}]$$

cloud fraction

$$N = XR'[q_{cs} + q_{cc}, \overline{q_t}, \overline{q_w}]$$

⇒ radiative heating/cooling, output cloudiness.

$$H'$$
 is a threshold of $\overline{q_t}/\overline{q_{\rm sat}}$ $\iff \overline{q_v} = H'\overline{q_{\rm sat}}$

- Prognostic cloud condensates (q_i, q_i):
 - cloud scheme combining Xu & Randall (1996) formula
 - + a geometrical hypothesis implying a critical RH profile:

$$\overline{q_{\mathsf{v}}} = \overline{q_{\mathsf{w}}} \cdot \mathsf{N} + H[z, \mathsf{phase}, \triangle x] \cdot \overline{q_{\mathsf{w}}} \cdot (1 - \mathsf{N})$$

 $N = XR[\overline{q_c}, \overline{q_t}, \overline{q_w}]$

- completed by protection of convective area ⇒ water phase contents, latent heat conversion;
- Radiative suspended cloud condensates:
 - (stratiform) diagnosed from oversaturation wrt RH profile

$$q_{cs} = \overline{q_t}' - H'(z)\overline{q_{\text{sat}}}$$
- (convective) q_{cc} diagnosed from N_c^- ,
- cloud fraction
$$q_{cs} = \overline{q_t}' - H'(z)\overline{q_{\text{sat}}}$$

$$q_{cc} = XR'^{-1}[N_c^-, \overline{q_t}, \overline{q_w}]$$

$$N = XR'[q_{cs} + q_{cc}, \overline{q_t}, \overline{q_w}]$$

- → radiative heating/cooling, output cloudiness.
 To spice up:
 - -H'(z) tuning entangled with H(z,...) while they represent \neq things and should not have same values nor variations
 - substantial impact of N_c^- in radiative cloud diagnostic
 - limits of realism + wish to reconcile the things...

Separate HUC profile

Alaro-1 3MT Tuning solid: H'(z), dash: $H(q_i)$, dot: $H(q_i)$

CSD tentative Tuning $H(q_l)$ and $H(q_i)$ (adj) but same H'[z] (rad)

Domain mean profiles: condensates

Domain mean profiles: condensates

A long long way to scores

- Finally could escape from the desperating entanglement (radiative vs adjustment tuning)
- Dangerous trap: focusing on a single 1-fortnight period.
- Presented tuning can give some good scores at the surface,
- and also upper air...
- ..except mainly a large positive bias of Relative humidity above 500hPa.
- Further tuning can now be done more peacefully
- Relativity of scores:
 - Local versions use different resolutions, domains, some specific tunings
 - Multi-resolution behaviour tuned by intercomparison, not with full verification package.

is not an outdated topic

should not be left to a few old-timer

All good will welcome.

Model physics