Highlights

- ✓ Use of high-resolution observations: RUC studies, use of nonnational radar data, Mode-S availability
- ✓ Need for/development of flow-dependent algorithms
- ✓ Radiation intercomparison and phys-dyn interface;
- ✓ GLAMEPS-v2 setup, HarmonEPS physics perturbations experiments
- ✓ Sub-km modelling: coordination, geospatial data
- ✓ HARP and discussions on common validation of new cycles

Assimilation of radar data in HARMONIE

Case study (in collaboration with MetCoOp)

(2.5 km AROME; 65 vertical levels;

DA: 3h RUC 3DVAR:

Forecast + 30h from 00, 06, 12, 18)

Two weeks August 2011

Conventional + radar radial winds + reflectivities (no lowest elevation)

Gives clear positive impact on specific humidity and temperature scores in the middle atmosphere (500 hPa)

Analysis increment

Model precipitation

Reflectivity obs

With radar data

No radar data

By Martin Ridal,

Mode-S observations and data production

Period 2012/08/09 10:00-10:15

Information on the Mode-S EHS research and the data production status can be found on http://mode-s.knmi.nl/

Currently, Mode-S EHS derived meteorological information is available for NMHS, after signing a Non Disclosure Agreement.

Data are available in NETCDF, ASCII and BUFR format each 15 minutes with a delay of 10 minutes

Data can be distributed using personal ftp-account. Contact mode-s@knmi.nl

OOPS/COPE

- OOPS:
 - Impacting on DA developments
 - Ecmwf has indicated delays likely.
 - OOPS/C++ training/working week at Ecmwf: November
 - LAM-specific issues adaptations: LBC, forcing
 - design of LAM 4DEnsVar: MF, Hirlam different ideas
- COPE: LAM aspects identified, work packages assigned and work started

Forecast model

- Dynamics: joint work on Aladin NH VFE scheme
- Cloud working group
- Stable boundary layer: MEB scheme in Surfex, EFB testing
- Radiation intercomparison: intercomparison of radiation schemes within Arome; consistency of radiation, cloud, aerosol treatment; treatment of orographic parametrizations. Tbd in close connection with development of new phys-dyn interface
- Sub-km scale modelling: exchange of experiences/ambitions
- Geospatial data

Geospatial data: testing higher-resolution datasets

gtopo30, deltax 1 km

... or SRTM, deltax < 100 m

Physiography datasets: Ecoclimap-1 and -2

ECOCLIMAP I: sharp gradients in the land use type along Finnish-Russian border, false lakes in Bielorussia => bias in V10m up to 3 m/s in HARMONIE-Lith

ECOCLIMAP II: Performance varies for different domains, but overall better. Some erroneous features remain.

Types of errors:

- Shift in ECOCLIMAP II!
- Inland seas (sea => lake)
- Missing small lakes/islands
- Curonian lagoon is 40% land (reported from Lithuania)

How much of a problem is this.

			ECOCLIMAP		
	%	Land	Lake	Sea	
CLC Finland	Land	75.193	3.374	0.666	
	Lake	3.108	5.290	0.004	
	Sea	0.281	0.026	12.057	

JEAN PORTEMER, 2013

R&D: Physiography

Shift in ECOCLIMAP II

ECOCLIMAP II

GlobCover

Higher resolution experiences

Experiences at sub-km resolutions:

- Experience gained with various high-resolution geospatial datasets
- Instabilities/crashes near model top: recommended dynamics settings to minimize this
- No real problems seen with shallow convection/turbulence behaviour sofar

Open scientific questions for hectometric resolutions:

- (When) do we need some 3D features (radiation, turbulence)?
- Which shallow convection scheme do we need? When explicit?
- Coupling frequency, coupling zone size.
- Physiographic fields resolution.
- Volume of the data to treat.
- Which turbulence parameters, turbulence mixing length?

An Irish example of VFR experiments

The value of 1-km resolution Harmonie (c37_irl10)

Over 2.5km resolution Harmonie (37h1p1ireland25)

HarmonEPS

First areas for experimentation

HarmonEPS

- ✓ Setup: 20+2 members with AROME/ALARO physics, and surface ass for all members. Run for 06, 18h UTC, up to +36h. Control run: full 6h cycling
- ✓ 3h Nesting experiments with 32/16km ECMWF EPS: little impact To be done: 3h vs 1h LBC
- ✓ Forecast model perturbations:
 - stochastic perturbation of tendencies (SPPT) in Arome: simplified version ("box-SPPT" for all tendencies)
 - cellular automata in Alaro

Planned:

- perturbations from humidity SV's, MSG cloud mask
- stochastic perturbations in several (microphysics, cloud) parametrizations
- surface perturbations: soil moisture, snow, SST, exchange coefficients
- hybrid 3D-VAR
- physics parameter perturbations: learn from experiences LAEF

Meteorological quality assessment

- H-A cooperation on validation/verification: Development of HARP
 - Initial focus on probabilistic verification/visualization; ready for routine use
 - Now on to spatial verification
- Exercise on assessing use of Harmonie system for validation of new cycles in Aladin: Turkey, October, Cy38t1; how to follow up?

