Overview of HIRLAM surface activities

Patrick Samuelsson

... by Ekaterina Kourzeneva

Hirlam

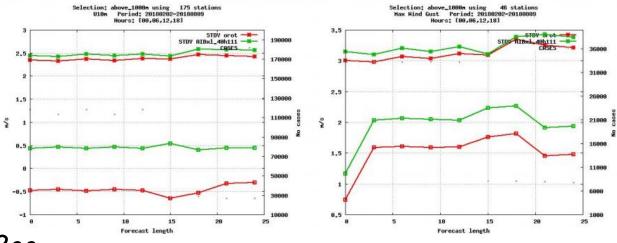
General HIRLAM surface comments

Release	cy40h1.1.1	cy43h2.1 (2019)	cy43h2.2 (2020?)
SURFEX	v7.3	v8.1	v8.1
ISBA			
Patches	1 or 2 (no SBL model)	2 (default)	2 (-4)
Soil/veg	Force-restore	Force-restore	Diffusion (14 layers) + MEB
Snow	D95	D95	Explicit snow (12 layers)
Glacier	"Pile of snow"	"Pile of snow"	Explicit snow as glacier?
Assimilation	CANARI-OI	CANARI-OI	SEKF/EKF & TITAN/gridPP
Sea	SICE	SICE	SICE
Assim of ice	no	no	ice temperature EKF?
Waves	no	no	WW3?
Lake	FLake (optional)	Flake (default)	FLake
Assimilation	no	no	EKF?
Town	TEB	TEB	TEB (more options?)
Assimilation	yes	no (?)	??
Physiog.	ECOCLIMAP (modified)	ECOCLIMAP-SG(?)	Utilize high res. data

Surface options for potential activation in upcoming cy43h2.1 meteorological release

- ECOCLIMAP-SG, Second Generation
- ECUME6 scheme for the water fraction of the sea tile (see presentation by Karl-Ivar)
- Orography turbulence (OROTUR)
- Modified values of minimum stomatal resistance Rsmin
- Assimilation of satellite product of snow extent
- SOILGRIDS New clay and sand database

These options, and more, are described in detail on this HIRLAM wiki: <u>https://hirlam.org/trac/wiki/Surface_physis_assimilation/First_cy43h_setup</u>

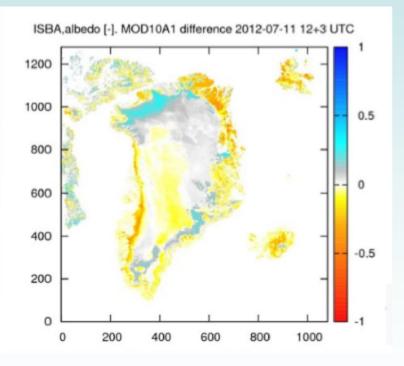


OROTUR scheme

by L. Rontu, J. Calvo, S. Viana et. al

- verification of OROTUR, also in the frames of cy43 tests for different domains
- overall positive impact

OROTUR increases the momentum flux by adding a subgrid orography dependent term

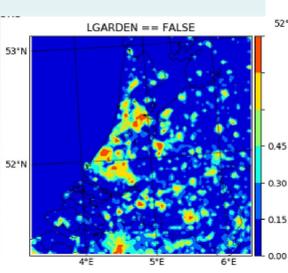

where Coo=a/Ax2 & V2oo are tunable constants. Default settings: a=XCOROT=500 XVOROT=8

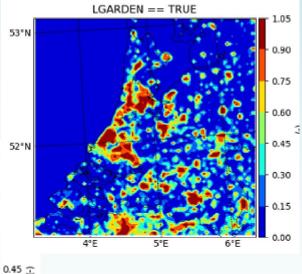
$$\vec{\tau}_{tot} = \tau_{os} + \tau_{ts} = (1 + C_o \sigma_{sso}^2) \tau_{ts}$$

$$C_o = C_{oo} V_{oo}^2 / (V_{nlev}^2 + V_{oo}^2),$$

Using satellite albedo product over glaciers by K.P. Nielsen, P. Samuelsson et. al

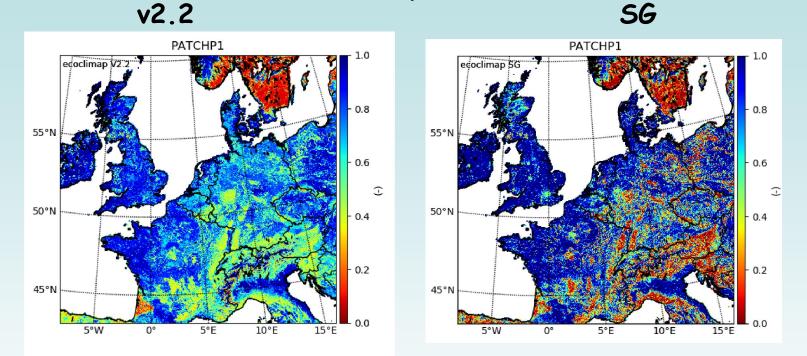
- gridded dataset GEUS MOD10A1 C6
- for CARRA project
- impact studies

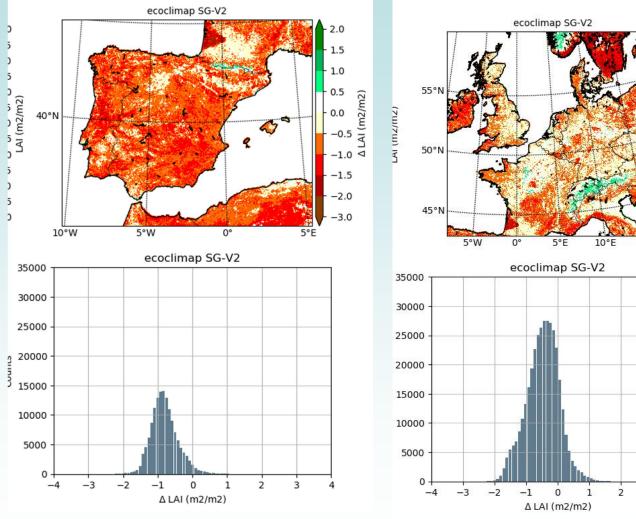



Evaluation of ECOCLIMAP SG

by J. de Vries

- over the Netherlands, MetCoOp and Iberian domains
- no comparison with independent data
- fractions of sea, inland water, urban
- LAI and tree height
- larger urban fraction!
- LAI is more realistic, but ...


See presentation on ECOCLIMAP-SG by John de Vries (KNMI) for more details: https://hirlam.org/trac/rawattachment/wiki/Meetings/Surface/Surface20190 1/ECOCLIMAP_v2.2-SG.pptx


Evaluation of ECOCLIMAP SG Fraction open land

Quite some 50-50% areas in v2.2 are near 100% forest in SG. These changes are confirmed and supported by other land-use data sets.

1-4 Mar. 2019

Evaluation of ECOCLIMAP SG

LAI differences (SG - v2.2) at the beginning of April

2.0

1.5

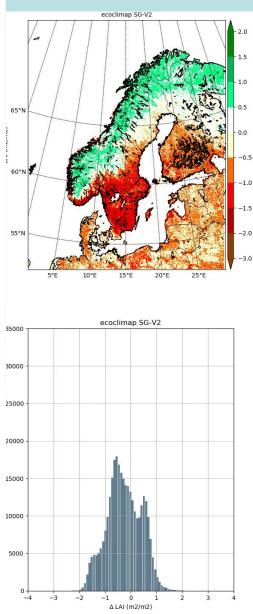
1.0

0.0

-1.0

-1.5

-2.0


-3.0

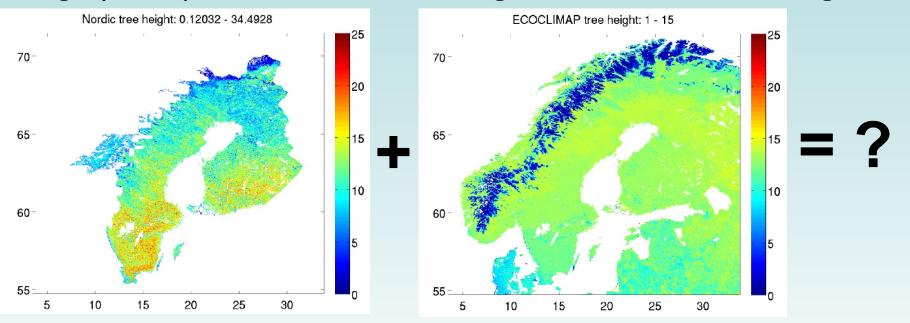
15°E

3

Δ LAI (m2/m2)

Evaluation of ECOCLIMAP SG

Spring LAI is in general smaller in SG than in v2.2.


Also these changes are confirmed and supported by other land-use data sets.

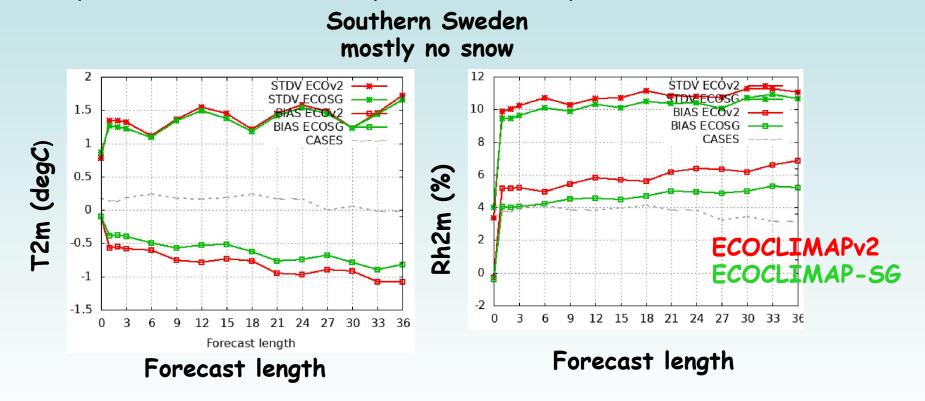
HIRLAM experience is also that SG LAI looks more realistic since e.g. LAI in v2.2 show increasing LAI already in February-March, which is not realistic.

ECOCLIMAP SG - how to update?

Geographically limited data bases, e.g. laser scanned tree height

How to merge with global data avoiding artificial boundaries? How to keep different contributions in a common update? Currently such combinations is the responsibility of each partner. But ideas on how to proceed with physiography needs for NWP, even cross-consortia, are discussed...

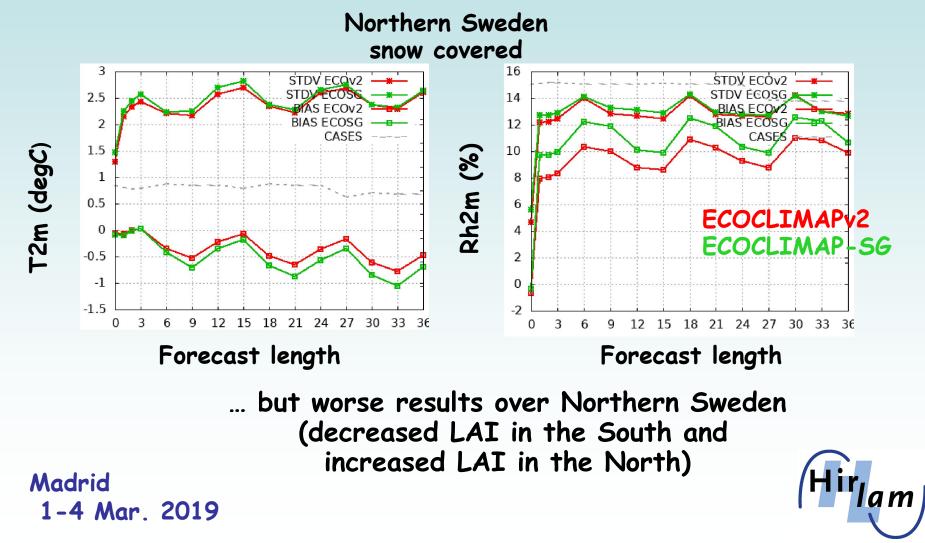
Madrid


1-4 Mar. 2019

First preliminary validation of ECOCLIMAP-SG

by P. Samuelsson

cy43h over the MetCoOp domain for April 1-14, 2018

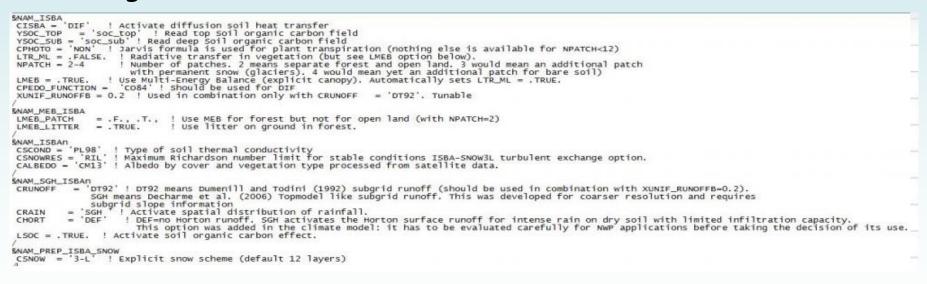

ECO-SG gives improvement over Southern Sweden (decreased LAI)

First preliminary validation of ECOCLIMAP-SG

by P. Samuelsson

cy43h over the MetCoOp domain for April 1-14, 2018

Testing of different options in SURFEX (our wishlist) in climate mode


by S. Viana and E. Gleeson see presentation by S. Viana

Iberian domain and Irish domain

Madrid

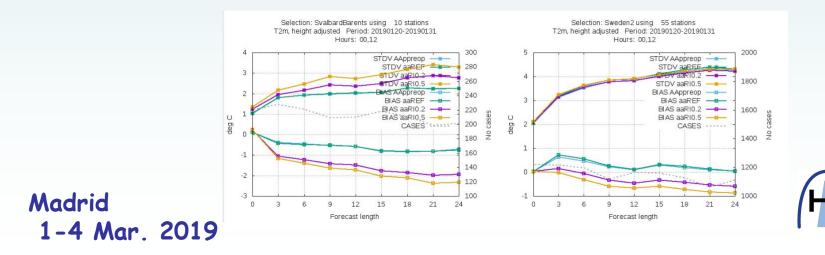
1-4 Mar. 2019

using various obs datasets for verification

Modified minimum stomatal resistance Rsmin...? by P. Samuelsson Hoshika et al. (2018): Rsmin values should be 1.5-3 times larger: Trees (4) = 150 * 1.5, Coniferous (5) = 150 * 2.75, 0: default C3 crops (7) = 40 * 3.0, C4 crops (8) = 120 * 1.5.3: LAI/2 Rh2m for May 7-10, 2018 4: Rsmin *(1.5-3) Northern Sweden, 2/3 still snow covered Southern Sweden, no snow 14 24 STDV cv42111 conv mbr0 STDV cy40h111 conv mbr0 STDV 40h11 convent 12 STDV cv40h111 conv mbr3 TSV cy40h111 conv_mbr4 22 STDV cy40h111 conv mbr4 10 BIAS cy40h111 conv mbr0 BIAS cy40h111 conv mbr0 BIAS cy40h111 conv mbr3 BIAS cy40h111 conv mbr3 20 8 BIAS cy40h111 conv mbr4 BIAS cy40h111 conv mbr4 **CASES** 6 18 8 4 % 16 2 0 14 -2 12 -4 -6 10 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 Forecast length Forecast length Worth testing higher Rsmin ECO-SG also suggests lower LAI... Madrid Hoshika, Y., Osada, Y., De Marco, A., Penuelas, J. and Paoletti, E., 1-4 Mar. 2019

2018. Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops. Global Ecology and Biogeography, 27(2), pp.257-275.

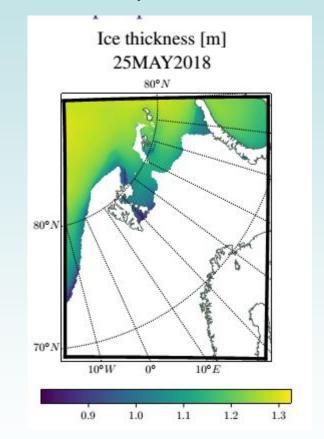
Testing:


by M. Homleid, L. Rontu et. al

- Harmonie Cy43h with many changes in surface
 - ISBA DIF (without DA), OROTUR, Snow ES, SoilGrids
 - Iberian and MetCoOp domains

•

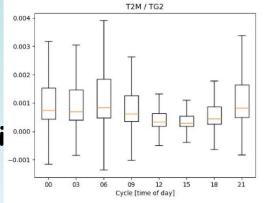
ISBA DIF is better in the stable boundary layer!

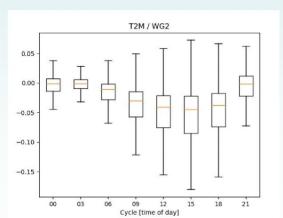

- the maximum Richardson number option for the stable boundary layer
 - sensitivity is very large! However both improvement and deterioration of scores

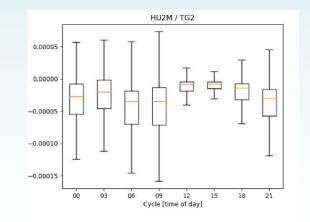
SICE scheme developments

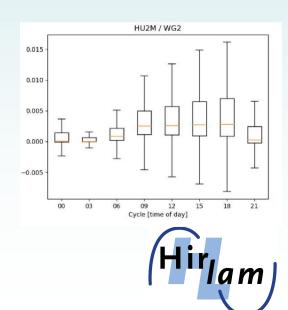
see presentation by Y. Batrack

- evolving ice thickness ... runs pre-operationally for MetCoOp and in CARRA
- validations against various obs
- steps towards DA

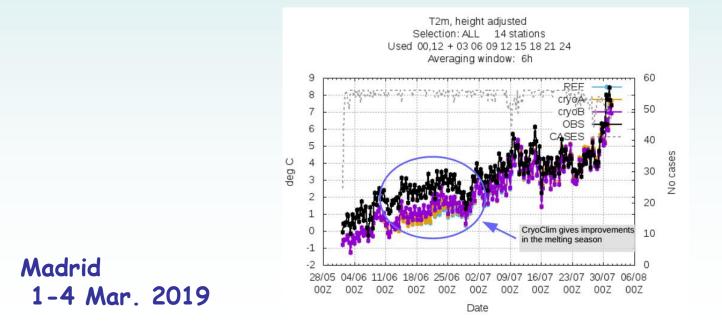



Testing of EKF/SODA for ISBA DIF


by Å. Bakketun et. al


It was decided in the meeting in ٠ Trømse in spring 2018 to stop testing of EKF/SODA for ISBA FR, due to too large elements of Jacobian matri •

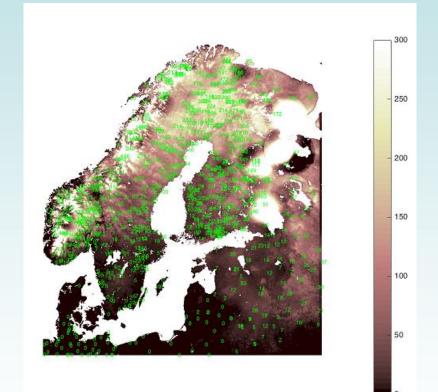
Bugs corrected EKF/SODA for ISBA DIF



SE from satellite for snow analysis

by M. Homleid et. al

- CryoClim data on SE for CARRA
- Tests over Svalbard and Arctic domains: improvements over melting period
- HSAF data for operational use
- Thinning of HSAF data, experiment runs technically



CANARI work ...

see presentation by E. Kourzeneva

- Motivation: problems with snow analysis, etc.
- Harmonization between CANARI and SURFEX
- Improving of obs. operator

• How to proceed with tiling?

Alternative DA methods for the land surface ... by T. Aspelien

<u>Gridpp software</u>

- Came from post-analysis
- External, but connected with the system via file formats
- Intended for using of crowd-source observations

by T. Landelius

Towads EnKF and coupled system

- 4D EnEKF system
- Use of satellite radiances
- Study of co-variances within the soil and between tiles

Thank you!

