

Large-Eddy Simulation of a radiation fog: impact of surface heterogeneities and droplet deposition

M.Mazoyer (CNRM), <u>C.Lac</u> (CNRM), T.Bergot (CNRM), O.Thouron (CERFACS), V.Masson (CNRM), L.Musson-Genon (CEREA)

Introduction

- Important progress in fog processes understanding with the campaigns : Cardington, Fog-82, Po Valley, ParisFog
- Progress with 1D simulations (Bergot et al., 2007...): vertical resolution essential
- Large Eddy Simulations (LES, meter resolution) necessary to represent heterogeneities and to progress (Nakanishi, 2000; Bergot, 2013)
- Most LES consider surface homogeneity (except Bergot et al., 2015 with buildings): 1st fog LES with vegetation heterogeneities
- Most NWP and LES models fail to reproduce realistic microphysical fields :

Observations

LWC $\sim [0.05-0.3] \text{ g.m}^{-3}$

Nc ~ [10-200] cm⁻³ Mazoyer et et al. 2016 : < 150 cm⁻³ [800-1000] cm⁻³ (China)

Simulations

LWC \sim [0.2-0.6] g.m⁻³

Nc fix: 100 ou 300 cm⁻³

Nc pronostic: 250 cm⁻³ (Stolaki et al., 2015)

800 cm⁻³ (Zhang et al., 2014)

Is there a missing term ?

PLAN

- 1. Study case and validation of the reference simulation : microphysics, visibility
- 2. Heterogeneities inside the fog layer
- 3. Sensitivity tests: barrier of tree, deposition
- 4. Conclusion/perspectives

From the Paris-Fog campaign

Site located near Paris on a semiurban area

Instrumental zone near a forest area: Strong surface heterogeneity – Tree barrier (Zaïdi et al., 2013)

A characteristic of the site : 88 % of the radiative fogs are elevated at the onset

Case November 15 2011 : cloud layer 150m agl and 30min later fog at the surface

- $\Delta x = \Delta y = 5m$; $\Delta z = 1m$, 156 levels up to 1500m Initialization with a radiosounding
- SURFEX: ISBA: grass + barrier of tree (15m height)
- 3D Turbulence scheme (Cuxart et al., 2000)

- $\Delta x = \Delta y = 5m$; $\Delta z = 1m$, 156 levels up to 1500m Initialization with a radiosounding
- SURFEX : ISBA : grass + barrier of tree (15m height)
- 3D Turbulence scheme (Cuxart et al., 2000)
- Tree drag effect (Aumond et al. 2013) : α=u,v,TKE

$$\frac{\partial \alpha}{\partial t}_{DRAG} = -C_d A_f(z) \alpha \sqrt{u^2 + v^2}$$

- $\Delta x = \Delta y = 5m$; $\Delta z = 1m$, 156 levels up to 1500m Initialization with a radiosounding
- SURFEX : ISBA : grass + barrier of tree (15m height)
- 3D Turbulence scheme (Cuxart et al., 2000)
- Tree drag effect (Aumond et al. 2013): α=u,v,TKE

$$\frac{\partial \alpha}{\partial t}_{DRAG} = -C_d A_f(z) \alpha \sqrt{u^2 + v^2}$$

- **2 moment microphysical scheme** Khairoudinov-Kogan (2000)(almost similar to LIMA): including **droplet sedimentation** $\frac{dS}{dt} = \phi_1 w - \phi_2 \frac{dr_c}{dt} + \phi_3 \frac{dT}{dt}_{RAD}$

- $\Delta x = \Delta y = 5m$; $\Delta z = 1m$, 156 levels up to 1500m Initialization with a radiosounding
- SURFEX : ISBA : grass + barrier of tree (15m height)
- 3D Turbulence scheme (Cuxart et al., 2000)
- **Tree drag effect** (Aumond et al. 2013) : α=u,v,TKE

$$\frac{\partial \alpha}{\partial t}_{DRAG} = -C_d A_f(z) \alpha \sqrt{u^2 + v^2}$$

- **2 moment microphysical scheme** Khairoudinov-Kogan (2000)(almost similar to LIMA): including **droplet sedimentation** $\frac{dS}{dt} = \phi_1 w - \phi_2 \frac{dr_c}{dt} + \phi_3 \frac{dT}{dt}_{RAD}$

- Add a new process : **Deposition of droplets on the vegetation (direct droplet interception by the plant canopies)** : only at the first vertical level on grass and over 15m trees : $\rho_a.r_c.V_{DEP} avec\ V_{DEP} = 2\ cm/s$

Katata (2014) : 2 cm/s < V_{DEP} < 8 cm/s on low vegetation

1. Thermodynamical evolution

Onset of fog at the ground: 02h30 in OBS and REF

Dissipation at the ground: 10h in OBS 8h30 in REF

1. Microphysics at 3 m

Droplet mixing ratio r

Droplet concentration Nc

Low values of observed r and N

Max_OBS= 53 cm⁻³ Max_MNH=350 cm⁻³

Correct estimation of the mass and the life cycle (dissipation too early)
Overestimation of the number of droplets

Droplet Size Distribution

Overestimation of the number of small droplets and underestimation of larger one Limit of the monomodal distribution

1. Diagnostic of visibility

The most often used in NWP models:

1. Using only cloud mixing ratio

$$VIS = a / (\rho_d.r_c)^b$$

Kunkel (1984) a=0.027 b=0.88

2. Using **cloudmixing ratio** and **droplet concentration**

$$VIS = c / (\rho_d.r_c.N_c)^d$$

Gultepe (2006): c=1.002 d=0.6473

Zhang (2014): c=0.187 d=0.34

1. Diagnostic of visibility

The most often used in NWP models:

1. Using only **cloudmixing ratio**

$$VIS = a / (\rho_d.r_c)^b$$

Kunkel (1984) a=0.027 b=0.88

2. Using **cloudmixing ratio** and **droplet concentration**

$$VIS = c / (\rho_d.r_c..N_c)^d$$

Gultepe (2006): c=1.002 d=0.6473

Zhang (2014): c=0.187 d=0.34

From observations

Zhang best adapted (most sensitive to low values of $r_{_{\scriptscriptstyle C}}$ and Nc)

1. Diagnostic of visibility

The most often used in NWP models:

1. Using only **cloudmixing ratio**

$$VIS = a / (\rho_d.r_c)^b$$

Kunkel (1984) a=0.027 b=0.88

2. Using **cloudmixing ratio** and **droplet concentration**

$$VIS = c / (\rho_d.r_c..N_c)^d$$

Gultepe (2006): c=1.002 d=0.6473

Zhang (2014): c=0.187 d=0.34

$$\frac{dS}{dt} = \phi_1 w - \phi_2 \frac{dr_c}{dt} + \phi_3 \frac{dT}{dt}_{RAD}$$

$$\frac{dS}{dt} = \phi_1 w - \phi_2 \frac{dr_c}{dt} + \phi_3 \frac{dT}{dt}_{RAD}$$

Time (UTC)

Time (UTC)

2. Fog formation (0240 UTC)

2. Mature phase of the fog (0620 UTC)

Activation driven by vertical velocity and radiative cooling

3. Sensitivity test: Impact of the tree barrier

22:0023:00 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 Time

Without tree

Fog starts earlier without elevated fog formation

3. Sensitivity test: Impact of deposition

Deposition and tree drag effect are essential to capture the fog life cycle and the magnitude of microphysical fields.

4. Conclusion - Perspective

- Results in Mazoyer et al., 2017, ACPD
- Surface heretogeneities essential to reproduce the fog life cycle
- Deposition essential to limit the droplet mass and number

- Deposition currently tested in AROME (ENM course) on winter 2015-2016
- Parametrization of deposition to be improved : depends on wind speed, LAI ...
- Droplet number overestimated : necessary to take into account the already condensed water as a sink of supersaturation in the activation process of 2-moment microphysical scheme (Thouron et al., 2012, GMD) : perspective for LIMA

