Experiences with DMI's operational COMEPS* ensemble system

Henrik Feddersen, Xiaohua Yang, Bent Hansen Sass, Kai Sattler

Danish Meteorological Institute

*Continuous mesocale ensemble prediction system

Background

- [In-house] users wanted
 - High resolution
 - Large domain
 - Long forecasts
 - Many ensemble members
- We are constrained by
 - Computational resources

Domains

COMEPS v1

COMEPS v2

• Big domain: 13 members

DMI

Vejr, klima og hav

• Small domain: 12 members + big domain members interpolated to small domain grid

Operational COMEPS

- Version 1 operationalized June 2017
 - Multi-model: HARMONIE-AROME + HIRLAM
- Version 2 operationalized May 2018
 - Only HARMONIE-AROME, HarmonEPS-40h1.1,
 2.5km, 65 vert. levels
- Version 3 operational later 2019
 - One (big) domain: NEA
 - HarmonEPS-40h1.1.1, 2.5km, 65 vert. levels

HPC usage prior to COMEPS

HPC used almost 100% after main synoptic hours

HPC idle

HPC usage with COMEPS v2

- Every hour we run two short control runs and four new perturbed COMEPS members
- COMEPS ensemble includes lagged members
- Every hour the four oldest perturbed members are replaced by the four new perturbed members

Rapid update cycling for control runs

- For each domain, run three parallel, time-shifted HarmonEPS suites
- 3DVAR upper air assimilation (conventional observations plus AMSU-A, AMSU-B, MHS, AMV, MODE-S, ATMS, RO and radar reflectivity); surface assimilation
- Allow use of different observation types and physics configurations in the three suites

Vejr, klima og hav

Perturbations

- Initial conditions: SLAF/random field perturbations (IFS-HRES) + PertAna
- Lateral boundary conditions: SLAF/random field perturbations
- Stochastic perturbations of surface parameters (roughness, albedo, SST, soil temperature, soil moisture)
- Multi-physics (shallow convection, turbulence, OCND2, Z01D, LCRIT)

Postprocessed products Probability maps, upscaled probabilities

2018102609+12h: Prob(Pcp>25mm/6h) Valid on Friday 26 Oct 21:00 UTC

Probability of exceeding threshold somewhere in neighbourhood of grid point

Postprocessed products Probability maps

2012122212+027h: Prob(Snowstorm) Valid on Sunday 23 Dec 15:00 UTC

Joint probabilities of, e.g., exceeding thresholds for both wind speed and snowfall somewhere in neighbourhood of grid point

Verification of upscaled probabilities

 Question from forecasters: "At what probability level do you recommend that we issue a warning?"

Verification of upscaled probabilities prob(pcp≥25mm/6h)

Verification of upscaled probabilities prob(pcp≥25mm/6h)

Verification of upscaled probabilities

- Question from forecasters: "At what probability level do you recommend that we issue a warning?"
- "Last summer you would have got more hits than false alarms if you had issued warnings [for pcp≥25mm/6h] when the upscaled probability was 50% or more!"

Verification of upscaled probabilities

- Question from forecasters: "At what probability level do you recommend that we issue a warning?"
- "Last summer you would have got more hits than false alarms if you had issued warnings [for pcp≥25mm/6h] when the upscaled probability was 50% or more!"
- The optimal balance between hits, false alarms and misses must take into account costs and losses associated with false alarms and misses.

Vejr, klima og hav

Postprocessed products Percentile maps

Ceiling percentiles

10th percentile

Ceiling 10th percentile [ft], 2019030603+03h Valid on Wednesday 6 Mar 06:00 UTC

median

Ceiling 50th percentile [ft], 2019030603+03h Valid on Wednesday 6 Mar 06:00 UTC

90th percentile

Ceiling 90th percentile [ft], 2019030603+03h Valid on Wednesday 6 Mar 06:00 UTC

Postprocessed products Postage stamp plots

2019030603+03h, ceiling [ft] Valid on Wednesday 6 Mar 06:00 UTC 500 1000 1500 2000 5000

Verification of gale force wind Comparison to IFS-ENS

36h forecasts, DIF 2018/19

Planned upgrades

- HarmonEPS-40h1.1.1
- All members on big domain
- Humidity perturbations(?)
- Use of IFS-ENS perturbations(?)

Dewpoint example

2019031909+3h, 2m dewpoint Valid on Tuesday 19 Mar 12:00 UTC

Unperturbed forecast

Extremely dry (due to humidity perturbation?)

IFS-ENS perturbations

- SLAF initial condition perturbations are not mutually independent/orthogonal
- IFS-ENS perturbations are mutually orthogonal
- Describe perturbation orthonormality by the dimension spanned by the perturbations, i.e. the "ensemble dimension" (or "bred vector dimension"; Patil et al. 2001; Pazó et al. 2010), using a total energy norm

Ensemble dimension (at forecast initial time)

Continuous Ranked Probability Scores

Perturbations:

- **IFS-ENS**
- · SLAF0
- · SLAF1

Vejr, klima og nav

IFS-ENS perturbations

- IFS-ENS perturbations span the phase space better than SLAF perturbations
- Skill (CRPS) is better for short lead times (less than ~12 hours) compared to SLAF method for the short period tested
- For longer lead times the benefits of IFS-ENS perturbations are not obvious
- More tests needed...

Summary of experiences with COMEPS

- Meteorological performance is comparable to other mesoscale EPS's
- Hourly updates allow better utilization of HPC resources
- (Some) forecasters look at COMEPS when they make their forecasts

Experiences with COMEPS

- Meteorological performance is comparable to other mesoscale EPS's
- Hourly updates allow better utilization of HPC resources
- (Some) forecasters look at COMEPS when they make their forecasts

Thank you for your attention!

