Simulated MSG SEVIRI Imagery from HARMONIE-AROME - Applications

Angeles Hernandez, AEMET

Thanks to: Olinda Carretero, AEMET NWP group, Alvaro Subías, Alicia Lopez

Joint 29th ALADIN Workshop & HIRLAM All-Staff Meeting 2019 Madrid, 1-4 Apr 2019

Outline

- 1. HALSSI application status and plans.
- 2. Why HA simulated imagery?
- 3. HALSSI applications:
 - 1. In weather forecasting.
 - 2. In satellite product development.
 - 3. In NWP.
- 4. Future work.

- HAL (HARMONIE-AROME LAM) + SSI (Simulated Satellite Imagery).
- HALSSI: software tool to produce simulated radiances
 - from HARMONIE-AROME NWP forecasts,
 - using RTTOV radiative transfer model.

- At the core: simulation of ToA radiances, using RTTOV,
 - that a satellite instrument would measure, for a specific channel
 - E.g. SEVIRI channel WV6.2 on Meteosat-11.
 - viewing a point on Earth, for a specific position of the satellite (e.g. 0 deg)
 - for a HA atmospheric profile + sfce conditions at that point.

Model-native geo.

Simulated BT - MSG-4 / SEVIRI / IR10.8 - AN: 2018032312 FC:+22 HARMONIE-AROME cycle 40h1.1.1.rc1 - Domain: IBERIAxI_2.5 Model geometry - Lambert projection - nx: 1141 / ny: 853

Sat (MSG4) geo.

Simulated BT (Sat geo.) - MSG-4 / SEVIRI / IR10.8 - AN: 2018032312 FC:+22 HARMONIE-AROME cycle 40h1.1.1.rc1 (exp AlBxl_40h111rc1_conv_SSI1) Domain: IBERIAxl_2.5 - View: MSG at 0 lon - pixels: ncols 960 / nrows 504

BT (K)

Model-native geo.

Simulated BT - MSG-4 / SEVIRI / WV6.2 - AN: 2018032312 FC:+22
HARMONIE-AROME cycle 40h1.11.rc1 - Domain: IBERIAxl_2.5
Model geometry - Lambert projection - nx: 1141 / ny: 853

Sat (MSG4) geo.

Simulated BT (Sat geo.) - MSG-4 / SEVIRI / WV6.2 - AN: 2018032312 FC:+22 HARMONIE-AROME cycle 40h1.1.1.rc1 (exp AlBxl_40h111rc1_conv_SSI1) Domain: IBERIAxl_2.5 - View: MSG at 0 lon - pixels: ncols 960 / nrows 504

Model-equivalent of the obs, in DA language.

1. HALSSI application – status and plans.

- In HARMONIE-AROME 43h2.x, part of post-process, optional.
 - Using RTTOV v12.2 or latest available.
 - Format: GRIB2 ECMWF ecCodes lib used for encoding.
 - Experimental.
- User choices, at least:
 - SEVIRI channels: IR10.8, WV6.2, WV7.3 (Meteosat-11).
 - Model-native geometry.
- Later
 - Meteosat-11, satellite geometry (located at 0 deg lat, 0 deg lon).
 - More SEVIRI channels.
 - Next generation of EUMETSAT geo satellites: MTG sat geo.

- ECMWF HRES: MSG4 SEVIRI simulated radiances (global) ops.
- Horizontal resolution of HA similar to current geo sats:
 - MSG SEVIRI: 3km at the SSP.
 - ECMWF HRES: current is 9 km (nominal).
 - HARMONIE-AROME: current default is 2.5 km (nominal).
 - Also possible to generate SI from any HA experiments, including sub-km resolution.
- Temporal frequency in the FC loop:
 - 1 hour in HA (or more frequent) vs 3 hour in ECMWF.

- Deep convection:
 - HARMONIE-AROME: convection-permitting.
 - ECMWF: not explicitly represented (it is parameterized).
- ECMWF HRES is global & medium-range.
- SSI from ECMWF HRES & HARMONIE-AROME are complementary
 - as the NWP models they come from.

Simulated BT - MSG-4 / SEVIRI / IR10.8 - AN: 2018101300 FC:+00

HARMONIE-AROME cycle 40h1.1.1 - Domain: IBERIAxI_2.5

Model geometry - Lambert projection - nx: 1141 / ny: 853

Cyclone Leslie

- MSG4 IR10.8.
- Model geometry.
- AN: 20181013 00
- HH+00, 01, ..., 36

Cyclone Leslie

- MSG4 WV6.2.
- Model geometry.
- AN: 20181013 00
- HH+00, 01, ..., 36

3.1. HALSSI applications in weather forecasting.

- Intuitive summary of a forecast e.g. Leslie loops.
- MSG SEVIRI images:
 - IR10.8 window: clouds.
 - WV6.2 and WV7.3: summary of middle and upper tropospheric dynamics.
- Case studies.
- Sidetrack so this was a tropical cyclone in a HIRLAM domain:
 - How well was it located and represented?
 - Would we need a larger domain for case studies?

3.1. HALSSI applications in weather forecasting.

Experts in interpretation of satellite images can provide a very valuable feedback.

Courtesy of Olinda Carretero

3.1. HALSSI applications in weather forecasting.

- NRT assessment of the AN and first few hours in the FC loop:
 - Comparison with observed Meteosat-11 imagery.
- Sidetrack: what about the spin-up?
 - What is the spin-up for simulated radiances?
 - I.e. from which step in the FC loop can we use truly use the SI?
 - Would an initialization help?

3.2. HALSSI in satellite product development.

- It is feasible to generate SSI for the next generation of European geostationary satellites:
 - HALSSI could help in preparations for future MTG-I (launch 2021?)
 with SI for the instrument FCI, e.g. channels IR10.5 / WV6.3.
- AMV studies from SSI.
 - In general for any satellite retrievals.

3.3. HALSSI applications in NWP.

- SI intuitive summary of a FC (as in weather forecasting).
 - E.g. in case studies.
- SI can help assess the quality of a cycle, specific aspects,
 - Mainly related to clouds, but also dynamics e.g. jet location.
- Paves the way for objective comparison between simulated and observed SI:
 - Radiance / BT frequency distributions.
 - Effective horizontal resolutions.

3.3. HALSSI applications in NWP.

- Objective comparison between SSI and observed SI several groups of metrics available for stats:
 - Pixel to pixel comparison statistics, e.g. MAE = Mean Absolute Error.
 - Neighbourhood-based statistics, e.g. FSS = Fractions Skill Score (Roberts and Lean, 2008).
 - Object-based statistics, e.g. MODE (Davis et al. 2006).
- Each metric type has different strengths:
 - Is it easy to implement?
 - Is it sensitive to spatial errors?
 - Is it possible to compare shapes?
- Perhaps the best choice depends on channel / feature type?
 - Semantic segmentation? How?

4. Future work.

- First, HALSSI v1 as part of HA cycle 43h2.X, experimental.
- HALSSI validation study effective resolution, spin-up, ...
 - Essentially to become aware of the limitations.
- Improvements / extensions:
 - Optimization SI is computationally expensive.
 - Satellite geometry (gridpoint to pixel: nearest neighbour, average).
 - Extension at other SEVIRI channels.
- Continue collaboration with experts in the interpretation of satellite images.
- Evolution shaped by user's feedback and management decisions.

Thank you for your attention

Any questions?

Alternatively:

- Contact me during coffee breaks.
- Or email ahernandezc@aemet.es

Acronyms

- BT Brightness Temperature.
- FCI Flexible Combined Imager (instrument on MTG satellites).
- HA HARMONIE-AROME
- HAL HAROMINE-AROME LAM
- IR Infra-Red.
- MSG Meteosat Second Generation. MSG4 = Meteosat-11 = current EUMETSAT geo. sat. at 0 lon.
- MTG-I Meteosat Third Generation Imager
- RT Radiative Transfer.
- RTTOV Radiative transfer model (Radiative Transfer for TOVS, originally).
- SEVIRI Spinning Enhanced Visible and Infrared Imager (instrument on MSG satellites).
- SI Simulated Imagery
- SSI Simulated Satellite Imagery
- SSP Sub-Satellite point.
- ToA Top of Atmosphere.
- WV Water Vapour.

References

- Bengtsson et al. (2017). The HARMONIE-AROME Model Configuration in the ALADIN-HIRLAM NWP System. Mon. Wea. Rev., 145, 1919-1935.
- Davis et al. (2006). Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 1772-1784.
- Hocking et al. (2018). RTTOV v12 Users Guide. Available from <u>www.nwpsaf.eu</u>.
- Roberts and Lean (2008). Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78-97.