
Running HARMONIE
on Xeon Phi Coprocessors

Enda O’Brien
Irish Centre for High-End Computing

Disclosure

Intel is funding ICHEC to port & optimize some
applications, including HARMONIE, to Xeon Phi
coprocessors.

Motivating Questions

Hypothetical:
•How much (human) effort is worth investing to
obtain a 10 x performance speedup, if available,
from hardware accelerators?
•How about 2 x speedup?
•Or 20% speedup?

Practical:
•Which provides more value: an extra compute
node, or an accelerator?

Some Jargon

• Hardware “accelerators” are “devices” attached to
“host” nodes.
– Include MICs and GPUs.

• MIC is “Many Integrated Core”
– Intel Xeon Phi coprocessors are one kind of MIC processor.
– MIC cores may be heterogeneous (different cores perform

different functions), unlike (standard) “multi-core”
processors, which are homogeneous (all cores the same).

• GP-GPU is “General-Purpose Graphical Processing Unit.

Xeon Phi Coprocessor Overview

Host Node GPU/MIC Device

(PCI-e bus)

CPU GPU/MIC

Memory

Memory

(control)

Ways to use Accelerators
Xeon Phi GPU

Offload mode:
-Uses directives in source
-Many programming constraints
-All processes run on hosts, with
parallel sections offloaded to
accelerator

✔
(possible, but hard)

✔
(possible, but hard)

Native mode:
-no source changes required
-Cluster of MIC nodes

✔
(easy)

X

Symmetric mode:
-No source changes required
-MICs & hosts each a separate
node in a cluster

✔
(should be easy,

but isn’t)
X

Offload of Main OpenMP loop Fails

cpg.F90(570): error #8545:
A variable used in an OFFLOAD region must not be of
derived type with pointer or allocatable components.
[YDSL]
!dir$ omp offload target(mic)
in(ydsl,CDCONF,LDRETCFOU,LDWRTCFOU0,LDCPG_SPLIT)

That is a show-stopper.

Xeon vs. Xeon Phi: Vital Stats
E5-2660 2.2 GHz Xeon Phi 5110P

Cores (pre node) 20 61

Threads (per node) 40 240

Clock Freq. 2.2 GHz 1.053 GHz

Memory 64 GB/node 8 GB x 2 cards
= 16 GB

Max. Stream Triad 91 GB/s 137 GB/s

Linpack 320 Gflop/s 720 Gflop/s

IMB PingPong latency < 2 usec 5 - 12 usec

IMB PingPong
Bandwidth

> 4 GB/s 0.22 - 4 GB/s

Phi performance is contingent on using all cores or threads!

IMB Ping-Pong 0-byte Message Latency
(usec)

t[usec] host0 host0-
mic0

host0-
mic1

host1 host1-
mic0

host1-
mic1

host0 0.36 5.24 6.40 1.96 6.43 7.05

host0-
mic0 5.24 2.28 9.08 6.43 8.96 9.71

host0-
mic1

6.40 9.08 2.37 7.05 9.71 10.99

IMB Ping-Pong 4-MB Message Bandwidth
(MB/s)

MB/s host0 host0-
mic0

host0-
mic1

host1 host1-
mic0

host1-
mic1

host0 4067 4923 5193 5870 4156 505

host0-
mic0 4923 2020 1269 4156 3539 494

host0-
mic1

5193 1269 1951 505 494 266

Test Code (Fortran)

!$OMP PARALLEL DO PRIVATE(i,j,k)

 do k=2,nz-1

 do j=2,ny-1

 do i=2,nx-1

 arr_out(i,j,k) = wght1*arr_in(i,j,k) + wght2*(

 & arr_in(i-1,j,k) + arr_in(i+1,j,k) +

 & arr_in(i,j-1,k) + arr_in(i,j+1,k) +

 & arr_in(i,j,k-1) + arr_in(i,j,k+1))

 enddo

 enddo

 enddo

!$OMP END PARALLEL DO

Best case: 3x speedup on Phi

HARMONIE on Xeon Phi

• HARMONIE builds ~cleanly with “-openmp -mmic”, runs natively on Phi
– No source code changes (in principle)

– Must use Intel compilers, Intel MPI

– Must re-build zlib, hdf5, netcdf, & grib_api with “-mmic”
• Really a “cross-compile”, but configure files don’t recognize MIC archictecture.
• Configure for host, then edit config.status and Makefiles before running “make”.
• Edit LD_LIBRARY_PATH etc. to pick up “mic” instead of “intel64” libraries.

• 8 Builds completed:
– HARMONIE cycle37h1.1 and cycle38h1.1;

• MPI-only and MPI/OpenMP

– Host and Phi.

• Main executable from “Phi” build copied to “standard” installation
– for use in “Forecast” phase only.

• Test case, IRELAND55: 300 x 300 x 65-point domain, 5.5 km resolution:
Memory needed: ~20GB minimum (depends on run-time config.)

Harmonie Run-time Script Changes

Consolidate all run-time changes in scr/Forecast
•Need pre-built Harmonie executable: MASTERODB.MIC
•Modify hostfile, set Phi-related environment variables, submit exe.:

convert ${PBS_NODEFILE} > hfile.mic

export I_MPI_FABRICS=shm:ofa # (Optional…)
export I_MPI_MIC=enable
export I_MPI_MIC_POSTFIX=.MIC
export MIC_ENV_PREFIX=MIC_
Export KMP_STACKSIZE=200M
Export KMP_MONITOR_STACKSIZE=12MB
Export KMP_AFFINITY=”compact”
Export OMP_NUM_THREADS=240

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MC_COMPILER_LIB}:$
{MIC_MKL_LIB}:${MIC_NETCDF_LIB}:${MIC_HDF5_LIB}

$MPPEXEC -f hfile.mic $BINDIR/$MODEL -maladin -v$VERSION -e$CNMEXP
-c$NCONF -t$TSTEP -fh$LL -a$ADVEC || exit

MPI vs. OpenMP on Host nodes

Host: 20 physical cores; 40 logical cores (with Hyperthreading)

No HyperThreads Using HyperThreads

MPI
Processes

OpenMP
Threads

Total
Threads

Forecast
Time (s)

OpenMP
Threads

Total
Threads

Forecast
Time (s)

2 10 20 1570 20 40 940

5 4 20 1445 8 40 814

10 2 20 1384 4 40 727

20 1 20 769 2 40 687

On Host: Use MPI processes in preference to OpenMP threads
- (after using OpenMP to soak up the “HyperThreads” or “virtual cores”)

MPI vs. OpenMP on MIC cards

MPI Only 192 MPI tasks
(12 MICs, 16 MPI tasks/MIC) 3779s

MPI/OpenMP 12 MPI tasks
(12 MICs, 16 OMP threads/task) 1448s

MPI/OpenMP 12 MPI tasks
(12 MICs, 50 OMP threads/task 931s

On MICs: Use OpenMP threads in preference to MPI processes

Micsmc Screenshot (from p1x12_t80)

HARMONIE Profiles

TRGTOL = TRansform Grid TO Latitude decomposition
TRLTOM = Transform Latitude TO M (zonal) decomposition
TRMTOL = TRansform M (zonal) TO Latitude decomposition
TRLTOG = TRansform Latitude decomposition TO Grid

Non-threaded routines dominate at large thread-counts

Issues
• Much performance (cores, threads) left unused because of memory limits.
• Could OMP_NUM_THREADS be increased without increasing memory usage?

– Reduce number of “private” OMP variables?
– Use more MPI tasks/MIC, fewer OMP-threads/MPI-task?
– Find “optimal” KMP_STACKSIZE?

• To run Harmonie efficiently on the Xeon Phi coprocessors, need a problem size
big enough to scale to ~100+ threads, yet small enough to fit in < 8GB memory.
– Next-generation 7000-series MIC processors have 16 GB memory.

• Symmetric mode (HARMONIE running on both host and MIC processors
simultaneously) currently “hangs” in first MPI collective.
– Still, most promising prospect…

• Offload mode has many issues with pointers in derived data-types, which will
require many source-code changes.
– Is that even worthwhile?

