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The EFB turbulence closure

The starting point of the Energy- and Flux-Budget turbulence
closure for stably stratified flows, Zilitinkevich et al.,2013,
BLM,146,341-373, lies in considering the total energy of turbulence,
consisting of turbulent kinetic energy and turbulent potential energy:
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Solving a system of equations for second moments in a steady state
yields diagnostic expressions for the turbulent time scale, tT , and for
the turbulent exchange coefficients of heat and momentum Kh and
Km as functions of the stability and the turbulent energies.
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EFB in the AROME physics

After replacing the diagnostic formulation for θ′2 with a prognostic
one, the (two-equation) EFB closure can be implemented into the
AROME physics simply by:

• setting the mixing length and dissipative length scale equal to

tTe
1
2
k.

For numerical stability, the time scale was determined by relaxation
towards the changing equilibrium-value computed at every time
step.

• adjusting the values of several empirical constants

• deciding how to handle unstable stratification
The solution adopted here was to simply compute the length scale
as for neutral stratification
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Experiments

The EFB turbulence closure was implemented into HARMONIE
MUSC cy38h1, and tested in three cases:

• the stably stratified idealized GABLS1 case

• a ”conventionally neutral” idealized case

• the realistic GABLS3 case

For the two idealized cases MUSC is compared to LES-results
provided by Andrey Glazunov. For GABLS3 results are compared to
data.
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GABLS1: Setup

An initially 100 m deep mixed layer topped by a stably stratified
atmosphere, having a uniform zonal wind in geostrophic balance is
evolving in response to a constant geostrophic forcing, turbulent
mixing and a surface temperature cooling at a constant rate. No
parameterized processes other than turbulent mixing, surface heat
flux, and surface friction are active.

Results are displayed as averages of hours 8..9 of simulated time.
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GABLS1: Potential temperature
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GABLS1: Heat flux
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GABLS1: Wind speed
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GABLS1: Hodographs
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GABLS1: Momentum flux
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GABLS1: Summary

• MUSC (cy38h1) overestimates the downward transport of heat
and momentum. The mixed layer is too deep, the wind maximum
occurs too high, and the profile of wind speed has a spurious point
of inflexion.

• Introducing the EFB-turbulence closure improves all these features,
as well as the shape of the hodograph.
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Conventionally neutral case: Setup

As in GABLS1, but surface heat flux is disabled: An initially
100 m deep mixed layer topped by a stably stratified atmosphere,
having a uniform zonal wind in geostrophic balance is evolving in
response to a constant geostrophic forcing and turbulent mixing. No
parameterized processes other than turbulent mixing and surface
friction are active.

Results are displayed as averages of hours 19..20 of simulated time.
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Conventionally neutral: Pot. t.
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Conventionally neutral: Heat flux
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Conventionally neutral: Wind speed
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Conventionally neutral: Hodographs
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Conventionally neutral: Momentum flux
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Conventionally neutral: Summary

• MUSC (cy38h1) overestimates the downward transport of heat
by a factor of 3 at the top of the mixed layer, which becomes
consequently too deep and too warm. Introducing EFB reduces
the flux, but it remains too strong.

• MUSC (cy38h1) overestimates the momentum flux by a factor
2. The wind-maximum occurs too high, and the shape of the
wind profile is wrong, having a pronounced spurious point of
inflection. Introducing EFB reduces the momentum flux, but does
not improve the shape of the wind-profile.
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GABLS3: Setup

A clear-sky mid-latitude summertime diurnal cycle at Cabauw in the
Netherlands, starting from a convective bl at 12 UTC, close to mid
day LST, on the 1st of July 2006. Initial conditions and
time-dependent geostrophic/advective forcing specified based on
local observations, radio sounding at De Bilt, and 3-D modelling.
The full (AROME) physics is active in MUSC.
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GABLS3: Wind speed at 200 m a.g.
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GABLS3: Friction velocity
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GABLS3: Wind speed at 10 m a.g.
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GABLS3: Screen temperature
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GABLS3: P. temperature, h+24
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GABLS3: Wind speed, h+24
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GABLS3: Summary

• The interaction of processes, as well as the imposed
advective/geostrophic forcing are important.

• Night-time screen temperature is too cool in both versions of
MUSC. EFB closure gives no improvement.

• In MUSC (cy38h1) the strength of the nocturnal jet is
underestimated, and the onset is delayed compared with
observations. Introducing the EFB closure yields moderately
improved strength and timing.
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Conclusions and outlook

• Application of the EFB turbulence closure shows potential for
improving the simulation of stably stratified flows, and can be
implemented in MUSC/AROME without obvious adverse effects
for neutral or unstable stratification.

• Issues requiring further attention:

? Determination of the turbulent length scale, and related issues
of numerical stability

? A length scale for unstable stratification
? Relinquishing the prognostic turbulent potential energy (or θ′2)
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