

Evolution of dispersion spectra during successive steps of assimilation cycle

Antonín Bučánek

23st ALADIN Workshop and & HIRLAM All Staff Meeting 2013, 15-19 April, 2013, Reykjavik, Iceland

Aladin set up

- ALADIN cycle 36t1ope (ALARO-0 with 3MT)
- LACE domain (309x277 grid points, linear truncation E159x143, Δx~9km)
- 43 vertical levels, mean orography
- time step 360 s, 3h coupling interval
- Ensemble based B matrix

AEARP – Assimilation ensemble ARPEGE

- Only two members of AEARP ensemble are used to build LAM ensemble
- 4DVar, 6h cycling, perturbed observation
- AEARP resolution T399, ~50 km

DFI Blending

$$\mathbf{x}_{ALD}^{i} = \mathbf{x}_{ALD}^{g} + \Psi_{L \to H} \left[\overline{\Psi_{G \to L} \left(\mathbf{x}_{ARP}^{a} \right)} \right] - \Psi_{L \to H} \left[\overline{\Psi_{H \to L} \left(\mathbf{x}_{ALD}^{g} \right)} \right] \text{ instead of } \mathbf{x}_{ALD}^{i} = \overline{\Psi_{G \to H} \left(\mathbf{x}_{ARP}^{a} \right)}$$

 $\Psi_{X \to Y}$: change of geometry (*G* - ARPEGE, *H* - ALADIN nominal, *L* - ALADIN low truncation) In practice, $\Psi_{G \to L} = \Psi_{H \to L} \cap \Psi_{G \to H}$, since intermediate files are required for coupling. These transformations are achieved using configuration 927 (E927 for $G \to H$, EE927 for $H \leftrightarrow L$).

Bars denote a digital filter initialization :

- simple bar for the internal filter, applied at low spectral resolution,

- double bar for the external filter, applied at full spectral resolution.

Blending low spectral truncation is set to E29x26.

Experiments

Dyn is dynamical adaptation experiment (dfi initialization, cold start)

Blend is experiment with dfi blending of upper air fields

- **Spin-up Blend** is experiment where only blending step is applied but no cycling
- **BlendVar** is based on Blend followed by 3DVar and canari with perturbed conventional observation
- Var experiment using 3DVar only
- **VarBlend** experiment where 3DVar is followed by blending

Ensemble based estimation of error stde and variance spectra Experimental period: 2.-28. 2. 2011, 4 forecasts a day, sample contains 108 "forecasts"

Blending cycle

Blending cycle

Reference Blend, guess-ala Blend, anal-arp Blend, blend Blend, low-arpege Blend, low-ala

BlendVar cycle

Standard deviation [s⁻¹]

Reference BlendVar, guess-ala BlendVar, anal-arp BlendVar, BlendVar, blend 3DVar

Relative horizontal variance spectra of logarithm of surface pressure

0.55

Standard deviation [K]

0_{.6}

Vertical profile of standard deviation for v

Comparison of analyses from all experiments

Reference Dyn,	guess-ala	
BlendVar,	3DVar	
Var,	3DVar	•••••
VarBlend,	blend	
Blend,	blend	
Dyn,	anal-arp	

Conclusion

Possible reasons for observed behaviour 3D-Var:

- Observations are projected to large scales
- Not proper accounting model errors
- Too small amount of observations, only SYNOP, TEMP observations were assimilated (45; 12)