

ALADIN General Assembly – HIRLAM Council DECEMBER 2016

ECMWF REPORT

Advancing weather science

- 1 Earth system modelling
- 2 Earth system assimilation and predictability

Delivering global predictions

- 3 The integrated ensemble system
- The quality of our forecasts

Sustaining high-performance computing

- 5 Scalability
- 6 High-performance computing

Supporting ECMWF

- 7 Funding and people
- 8 ECMWF's accommodation

Serving Member and Co- operating States

- 9 Making deliverables and expertise available
- 10 Delivering environmental information

ECMWF use of satellite data

Ensemble skill over the past twelve months

(Operational IFS)

- High resolution prediction = 9km
- Ensemble prediction = 18km
- Early stages of coupled modelling ocean-atmosphere
- Satellite observations from over 70 instruments
- Medium-range prediction skill up to 8-9 days
- Large pattern predictions up to two weeks
- Over 300 forecasters trained in using our products per year
- Collaboration across the world and 100 days of workshops and seminars held at ECMWF
- 2 x Cray XC40 and 1 GPU cluster

1. ADVANCING WEATHER SCIENCE

Oceans: from climate to weather

Ocean, waves, sea-ice at ECMWF

NEMO3.4

NEMO3.4 (Nucleus for European Modelling of the Ocean)

Madec et al. (2008)

Mogensen et al. (2012)

ORCA1_Z42: 1.0° x

1.0°ORCA025_Z75 : 0.25° x 0.25°

EC-WAM

ECMWF Wave Model

Janssen, (2004)

Janssen et al. (2013)

ENS-WAM: 0.25° x 0.25°

HRES-WAM: 0.125° x 0.125°

LIM2

The Louvain-la-Neuve Sea Ice Model

Fichefet and Morales Maqueda (1997)

Bouillon et al. (2009)

Vancoppenolle et al. (2009)ORCA025_Z75: 0.25° x 0.25°

Retracing the pathway of operational advances

Ingredients of the 43r1 upgrade: water-component

RESOLUTION Enhancement

4 times more in horizontal scale and 50% more in vertical in the Ensemble Forecast System

Ocean coupling with High Impact Weather

ATMOSPHERE-OCEAN COUPLING EVIDENCE

A case study on Neoguri Typhoon (5-7 July 2014) The air-sea interactions are particularly evident in the case of tropical cyclones

Towards a coupled system used across all ECMWF Forecasting Systems

BENEFIT OF COUPLING FOR MEDIUM-RANGE

Wind forecasts improvements throughout the atmosphere @DAY7 (impact onto the Hadley cell) T+168; 200hPa

From coupled modelling to data assimilation: CERA-20C

Clear benefits for the analysis if coupled data assimilation

From coupled modelling to data assimilation: CERA-20C

Clear benefits for the analysis if coupled data assimilation

Anomaly correlation for geopotential height at 500hPa in the Northern hemisphere, with respect to ERA-Interim analysis

And forecast skill improved by ~0.7 day

Ingredients of the 43r1 upgrade: sea-ice-component

43r1: other benefits...e.g. in cloud cover

2. DELIVERING GLOBAL PREDICTIONS

Headline scores and WMO verification

HRES - Z 500hPa Northern hemisphere

WMO scores - Z 500hPa Northern hemisphere

Ensemble forecasts - T 850hPa over Europe

Precipitation scores for high resolution and Ensemble

Director General's Report

Case study: The benefit of Ensemble to predict Greek floods

24-hour totals on 7 September 2016

4-day forecast ENS mean (red), analysis (pink)

Case study: The benefit of Ensemble to predict Greek floods

Accumulated 2 to 5 day precipitation from HRES

Case study: The benefit of Ensemble to predict Greek floods

Accumulated 2 to 5 day precipitation from ENS

3. SUSTAINING HIGH PERFORMANCE COMPUTING

Scalability

Within 4 years, ESCAPE and NextGenIO will have completed their tasks, generating:

- Workflow improvements for the observations pre and post processing and model output
- 7 most costly elements of the forecast model (IFS) –Dwarfs, will have improved efficiency or been replaced with alternatives
- We will have learnt to make the most of GPUs
- Co-design hardware applications through bilateral agreements with computing vendors

Scalability collaborative approach

Scalability: OOPS

Scalability: Testing OOPS

Cross section of increments in the IFS and OOPS

High Performance Computing: testing Phase 2 new additions

4. SUPPORTING ECMWF

Brexit?

Staff
Recruitment
External funding
Exchange rate...

Staff and funding: adding value through external funding

APPLICATE

Evaluating the contribution of selected observations to analysis accuracy and predictive skill

Staff and funding: adding value through external funding

APPLICATE

Evaluating the contribution of selected observations to analysis accuracy and predictive skill

ANYWHERE

Instantaneous probability of precipitation type derived from the ensemble forecast

AccommodationFuture of ECMWF data centre timeline...

20 December7 February28 February

5. SERVING MEMBER & CO-OPERATING STATES

Making deliverables and expertise available RMDCN Basic package speed (in Mbps)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2015 2017

Environmental services

Surface air temperature anomaly for September 2016 relative to the September average for the period 1981-2010. Source: ERA-Interim.

Twice-daily global forecasts up to 5 days of aerosol concentrations

Twice-daily multi-model probabilistic flood forecasts up to 15 days >50 European forecasting centres as partners

Delivering environmental information

