Hirlam/Aladin All Staff meeting
Reykjavík, 15-19 April 2013

Localized horizontal discretizations with appropriate adjustment properties for the ALADIN dynamics

Steven Caluwaerts, Daan Degrauwe, Piet Termonia, Pierre Bénard, Fabrice Voitus and Jean-François Geleyn

Content

```
Motivation
Constraints
Formulation for
SWE
```

Consequences
of asymmetry
Conclusions

1. Motivation
2. Constraints
3. Formulation for Shallow Water Equations
4. Consequences of time-asymmetry
5. Conclusions

Motivation

■ Aladin/Arome/Harmonie is a semi-implicit, semi-Lagrangian spectral model

- When going to higher resolutions and larger domain sizes, we will face some scientific and technical challenges:
- Representation of non-smooth fields (e.g. high-resolution orography) is problematic
- The atmospheric reference state for the SI must be spatially homogeneous
- Spectral transforms require domain-wide (MPI) communications

Motivation

■ Aladin/Arome/Harmonie is a semi-implicit, semi-Lagrangian spectral model

- When going to higher resolutions and larger domain sizes, we will face some scientific and technical challenges:
- Representation of non-smooth fields (e.g. high-resolution orography) is problematic
- The atmospheric reference state for the SI must be spatially homogeneous
- Spectral transforms require domain-wide (MPI) communications
- Study the replacement of the spectral basis functions with local basis functions (finite elements)

■ First focus on scientific impact

- This idea is not original (Staniforth, 1977)

Constraints

- We want to keep as much as possible intact

```
Motivation
Constraints
Formulation for
SWE
Consequences
of asymmetry
```

- necessary for a fair scientific comparison!
- limited development cost

Constraints

- We want to keep as much as possible intact

```
Motivation
Constraints
Formulation for
SWE
```

- necessary for a fair scientific comparison!
- limited development cost
- Constraint 1: stay on A-grid

We don't use horizontal staggering, i.e. all variables are defined in each gridpoint.

Constraints

- We want to keep as much as possible intact

Motivation

Constraints

- necessary for a fair scientific comparison!
- limited development cost
- Constraint 1: stay on A-grid

We don't use horizontal staggering, i.e. all variables are defined in each gridpoint.

- Constraint 2: keep time step organization

1. inverse FFT
2. physics
3. semi-Lagrangian interpolations
4. explicit dynamics
5. LBC treatment
6. forward FFT
7. solve Helmholz equation in spectral space

Constraints

- We want to keep as much as possible intact

Motivation

Constraints

- necessary for a fair scientific comparison!
- limited development cost
- Constraint 1: stay on A-grid

We don't use horizontal staggering, i.e. all variables are defined in each gridpoint.

- Constraint 2: keep time step organization

1. inverse FFT
2. physics
3. semi-Lagrangian interpolations
keep these!
4. explicit dynamics
5. LBC treatment
6. forward FFT
7. solve Helmholz equation in spectral space

Formulation for SWE

- Considering the linearized SWE equations in (u, v, h)

$$
\begin{aligned}
\frac{d u}{d t}+g \frac{\partial h}{\partial x}+f v & =0 \\
\frac{d v}{d t}+g \frac{\partial h}{\partial y}-f u & =0 \\
\frac{d h}{d t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) & =0
\end{aligned}
$$

it is well known that localized schemes (finite differences/finite elements) on A-grid give bad dispersion relations for gravity wave propagation

Formulation for SWE

- Considering the linearized SWE equations in (u, v, h)

$$
\begin{aligned}
\frac{d u}{d t}+g \frac{\partial h}{\partial x}+f v & =0 \\
\frac{d v}{d t}+g \frac{\partial h}{\partial y}-f u & =0 \\
\frac{d h}{d t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) & =0
\end{aligned}
$$

it is well known that localized schemes (finite differences/finite elements) on A-grid give bad dispersion relations for gravity wave propagation

wavenumber

Formulation for SWE

■ Two possible solutions:

- Go to a staggered (C-) grid \Rightarrow not within constraints!
- Reformulate in terms of vorticity/divergence (ζ, D) instead of (u, v)
\Rightarrow not entirely within constraints; we want to keep the RHS in (u, v)

Formulation for SWE

■ Two possible solutions:

- Go to a staggered (C-) grid \Rightarrow not within constraints!
- Reformulate in terms of vorticity/divergence (ζ, D) instead of (u, v)
\Rightarrow not entirely within constraints; we want to keep the RHS in (u, v)
So we will try a hybrid $(u, v) /(\zeta, D)$ approach.

Formulation for SWE

Motivation

Constraints

1. 3 TL time discretization is done in (u, v)

$$
\begin{aligned}
u^{+}+g \Delta t\left(\frac{\partial h}{\partial x}\right)^{+} & =R_{u} \\
v^{+}+g \Delta t\left(\frac{\partial h}{\partial y}\right)^{+} & =R_{v} \\
h^{+}+H \Delta t\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)^{+} & =R_{h}
\end{aligned}
$$

2. We switch to (ζ, D) without touching R_{u}, R_{v} and R_{h}

$$
\begin{aligned}
D^{+}+g \Delta t \nabla^{2} h^{+} & =\frac{\partial R_{u}}{\partial x}+\frac{\partial R_{v}}{\partial y} \\
\zeta^{+} & =\frac{\partial R_{v}}{\partial x}-\frac{\partial R_{u}}{\partial y} \\
h^{+}+H \Delta t D^{+} & =R_{h}
\end{aligned}
$$

3. We solve this system with FE to $\left(\zeta^{+}, D^{+}, h^{+}\right)$
4. We transform (ζ, D) back to (u, v), using FE

Formulation for SWE

- The resulting dispersion relation looks okay

Formulation for SWE

- The resulting dispersion relation looks okay

Formulation for SWE

■ The resulting dispersion relation looks okay

- But for larger timestep:

Consequences of asymmetry

- This behavior turns out to be the consequence of

Motivation
 Constraints
 Formulation for SWE

Consequences of asymmetry

1. with finite elements,

$$
\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial x}\right) \neq \frac{\partial^{2} \psi}{\partial x^{2}}
$$

2. there exists a time asymmetry in our scheme:

$$
\begin{array}{ll}
\text { LHS contains } & \nabla^{2} h^{+} \\
\text {RHS contains } & \frac{\partial R_{u}}{\partial x}+\frac{\partial R_{v}}{\partial y}
\end{array}
$$

with R_{u} containing $\frac{\partial h^{-}}{\partial x}$ and R_{v} containing $\frac{\partial h^{-}}{\partial y}$.

Consequences of asymmetry

- This behavior turns out to be the consequence of

Motivation
 Constraints

1. with finite elements,

$$
\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial x}\right) \neq \frac{\partial^{2} \psi}{\partial x^{2}}
$$

2. there exists a time asymmetry in our scheme:

$$
\begin{array}{ll}
\text { LHS contains } & \nabla^{2} h^{+} \\
\text {RHS contains } & \frac{\partial R_{u}}{\partial x}+\frac{\partial R_{v}}{\partial y}
\end{array}
$$

with R_{u} containing $\frac{\partial h^{-}}{\partial x}$ and R_{v} containing $\frac{\partial h^{-}}{\partial y}$.

- Solution: modify the pressure gradient terms in R_{u} and R_{v} to make the scheme symmetric again.

Consequences of asymmetry

- This behavior turns out to be the consequence of

1. with finite elements,

$$
\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial x}\right) \neq \frac{\partial^{2} \psi}{\partial x^{2}}
$$

2. there exists a time asymmetry in our scheme:

$$
\begin{array}{ll}
\text { LHS contains } & \nabla^{2} h^{+} \\
\text {RHS contains } & \frac{\partial R_{u}}{\partial x}+\frac{\partial R_{v}}{\partial y}
\end{array}
$$

with R_{u} containing $\frac{\partial h^{-}}{\partial x}$ and R_{v} containing $\frac{\partial h^{-}}{\partial y}$.

- Solution: modify the pressure gradient terms in R_{u} and R_{v} to make the scheme symmetric again.
- Remark: such an asymmetry is also present in the Staniforth (1986) scheme, which performs poorly for small Δt.

Consequences of asymmetry

Motivation
 Constraints
 Formulation for SWE

 of asymmetry■ Resulting symmetrized hybrid $(u, v) /(\zeta, D)$ FE scheme:

$$
\begin{aligned}
\mathcal{S}_{x y} D^{+}+g \Delta t\left(\mathcal{Q}_{x}+\mathcal{Q}_{y}\right) h^{+} & =\mathcal{L}_{x} \tilde{R}_{u}+\mathcal{L}_{y} \tilde{R}_{v} \\
\mathcal{S}_{x y} \zeta^{+} & =\mathcal{L}_{x} \tilde{R}_{v}-\mathcal{L}_{y} \tilde{R}_{u} \\
\mathcal{S}_{x y} h^{+}+H \Delta t \mathcal{S}_{x y} D^{+} & =\mathcal{S}_{x y} R_{h} \\
\mathcal{S}_{x y} D^{+} & =\mathcal{L}_{x} u^{+}+\mathcal{L}_{y} v^{+} \\
\mathcal{S}_{x y} \zeta^{+} & =\mathcal{L}_{x} v^{+}-\mathcal{L}_{y} u^{+}
\end{aligned}
$$

Consequences of asymmetry

■ Resulting symmetrized hybrid $(u, v) /(\zeta, D)$ FE scheme

Motivation
 Constraints

- Dispersion relation:

Consequences of asymmetry

■ Resulting symmetrized hybrid $(u, v) /(\zeta, D)$ FE scheme

■ Note that a 2TL variant of the scheme can also be derived.

Conclusions

We present a localized horizontal discretization scheme:
■ finite-element based

- on our non-staggered A-grid
- which fits into the ALADIN semi-implicit, semi-Lagrangian algorithmics
- doesn't require modifications to gridpoint calculations (physics!)
- has an excellent dispersion relation for gravity waves
- opens the way for answering scientific questions like a non-homogeneous reference state and influence of steep orography

Thank you!

