

Scatterometer Assimilation Experiments with HARMONIE

In the framework of IPMA/KNMI cooperation in scatterometry

Isabel Monteiro

Thanks to:

Gert-Jan Marseille, Ad Stoffelen, Jur Vogelzang

what is done so far

Outline

- Objectives
- Observing System Experiments (OSE) with mesoscale HARMONIE model
- Preliminary results
- Work to be done

Objectives and motivation

Many meteorological conditions over Portugal are generated in the Atlantic:

- ➤ Meteorological observations over the Atlantic are scarce.
- NWP forecasts rely on accurate determination of the model initial state.
- Observed winds are expected to contribute to a better model initial state.
- Scatterometers provide regularly a large number of wind observations near the ocean surface.

Can scatterometer with seek used in DA for an improved estimate of the model initial state (namely for a domain over Iberia)?

HARMONIE model

(Hirlam ALADIN Research on Meso-scale Operational NWP in Euromed)

Domain: IBERIAxxm_2.5

B Matrix, thanks to AEMET

OSE

Experiment	Data Assimilated
Iberia_EXP0	Conventional
Iberia_EXP1	No observations
Iberia_EXP2	Conventional+ ASCAT-coastal (MetOp-A and MetOp-B) with data thinning (default setting in HARMONIE)
Iberia_EXP3 ??	Conventional + ASCAT-coastal + OSCAT-50/25
Iberia_EXP2a ??	Conventional + ASCAT-coastal (MetOp-A and MetOp-B) with no thinning

CONTROL

Instituto Portugues do mai e da Adinosiera, i.r.
Rua C- Aeroporto de Lisboa
1749-077 Lisboa – Portugal

OSE

- ➤ 6 day period 06-02-2014 to 11-02-2014 which included the "Stephanie storm"
- High wind speeds at Iberia north coast
- > 20 m wave heights registered at Estaca Bares Buoy
- Nice case: 4 scatterometers in orbit during this period

Data description - conventional

- Upper air observations:
 - radiosonde (TEMP)
 - aircraft reports (AIREP)
 - AMDAR, aircraft reports but according to WMO specifications
- Surface observations:
 - SYNOP
 - Drifting buoys
 - SHIPS

Data description-Scatterometres

Scatterometers are radar instruments, providing estimates of wind speed and direction near the sea surface.

- ➤ ASCAT European C-band scatterometers onboard Metop-A and Metop-B satellites. Sun-syn orbit Local time (equator crossing) 09:30 UTC, 12.5 km sampling
- ➤ OSCAT Indian Ku-band scatterometer on Oceansat-2 satellite Sun-syn 12:00 UTC, 50 km(use 25 km??) sampling (use for verification only??)
- ➤ HSCAT (for verification purposes only) Sun-syn 06:00 UTC 25 km sampling
- sampling ≠ resolution in the case of ASCAT-coastal product used in this study is about 28 km

Data description-Scatterometres

Design Life | Extended Life

Design Life Extended Life

Operating

Approved

Source: WMO OSCAR database and direct interactions with agencies

Data description-Scatterometres

- Challenges to scatterometer DA (Marseille and Stoffelen, 2016):
 - In 3D-Var, all observations within the assimilation window are used as if they were made at analysis time, not true for ASCAT and other scatterometres. In 3-hour cycling observations are used when measured within ±1.5 hours from analysis time
 - ASCAT estimates are not point observations but area averages and this is not taken into consideration in the observation operator H matrix (maybe a good approximation for a global hydrostatic model, but probably not the case for mesoscale models)
 - HARMONIE with a 2.5 km grid has a effective resolution of 15-20 km, higher than ASCAT 28 km effective resolution and much higher than Ku band scatterometers

Preliminary Results

➤ A well-tuned DA system pulls the model state towards the true atmospheric state not only on observation locations, but also in non-observed regions.

➤ Do model simulations at analysis time (fc=0) compare best with observations?

Radiosondes (EXPO)

Radiosondes (EXPO)

SYNOPs Land (EXP0)

HA_lberiaScatt_EXP0; 2014020600-2014021121

z geopot.

ASCAT (EXP2)

HA_lberiaScatt_EXP2; 2014020600-2014021121 ascat-u background deparature o-b analysis deparature o-a 1600 1600 nb= 3506 nb= 3506 mean= 0.28; std= 2.23 mean= 0.06; std= 1.16 1400 1400 min= -13.55; max= 10.59 min= -7.68; max= 6.50 1200 1200 1000 1000 800 800 600 600 400 400 u component 200 200 -10-5 -1010 10

ASCAT (EXP2)

DriBuoys (EXP2)

HA_lberiaScatt_EXP2; 2014020600-2014021121

z geopot.

OSCAT (EXP3)

OSCAT (EXP3)

DriBuoys (EXP3)

HA_lberiaScatt_EXP3; 2014020600-2014021121

z geopot.

Preliminary Results

> Do DA degradates the model?

- statistics of data usage in the assimilation step (ccma files) show that both for stdev and bias (o-a) present smaller values than (o-b), as expected.
- This is true for all observing systems
- This is true for EXP0,EXP2 (and EXP3)

The system works, no deterioration

EXPO - Control

EXP2 - ASCAT-A/B

EXPO-EXP2

EXPO - Control

EXP3 - ASCAT-A/B, OSCAT~50 km grid

EXPO-EXP3

Verification

- Only analysis that used ASCAT DA will be used for comparison, i.e., 0900/2100 and/or 0000/1200
- Data to be used for verification purposes has to be considered carefully
 - Iberian (moored) coastal buoys
 - SYNOPs from coastal stations
 - Scatterometers not used in DA HSCAT / OSCAT(??)

EXPO - Control

EXP2 - ASCAT-A/B

EXPO-EXP2

Rua C - Aeroporto de Lisboa 1749-077 Lisboa – Portugal

ASCAT-coastal_Metop-A_20140209 Descending

Preliminary (first) conclusions

- Our DA system is well tunned
- > ASCAT Data Assimilation has an impact on the model forecast.
- We still need to investigate if the forecast skill is improved (relatively to DA conventional observations)

Work to be done

- The skill score we are planning to use is from statistics of observations minus model forecasts o-f for
 - 10 m wind components
 - MSLP
- Observations used for verification purposes should come from an observation system not used in DA.
 - coastal stations not used in DA
 - IH (Portuguese Navy) and Puertos Del Estado buoys
 - Scatterometer not used in DA

we need to have a number of observations large enough for significant statistics to be obtained

Thank you!

Backup slides

EXP2 - ASCAT-A/B

