Application of convection-permitting EPS C-LAEF at ZAMG

Clemens Wastl, Yong Wang, Christoph Wittmann

Overview

- EPS at ZAMG
- C-LAEF: System introduction
- Uncertainty representation in C-LAEF
- Application of C-LAEF: Forecasters' perspective
- Verification
- Conclusions & Outlook

Ensemble prediction systems at ZAMG

C-LAEF – Fact sheet

C-LAEF: Convection permitting - Limited Area Ensemble Forecasting

model code based on AROME (cy40t1), upgrade planned in autumn 2020 to cy43 operational since November 2019, running on ECMWF HPC - time critical option TC-2

•	
Ensemble size	16 + 1 (control)
Δx / vertical levels	2.5 km / 90
Coupling	ECMWF-ENS (3-hourly coupling), IFS-HRES (control member, 3-hourly coupling)
Runs per day	00 UTC (+60h), 12 UTC (+48h), 06 and 18 UTC (+6h)
Assimilation cycle	6h
Assimilation	Atmosphere (3D-VAR), surface (OI)
Output	Hourly (optional 15min for precipitation)
Perturbations	Observations (surface, atmosphere), LBC, model (stoch. physics)
Archive	Archiving of grb Files of 00 und 12 UTC at MARS archive of ECMWF
Backup	ECMWF-ENS downscaling
Availability	4h after initialisation ZAMG
·	Meteorologie und

C-LAEF – Uncertainty representation

Initial conditions error

Lateral boundary conditions error

Model error

- Ensembledata-assimilation (EDA)
- Ensembledata-assimilation at surface (sEDA)
- Ensemble-Jk

Keresturi et al., 2019: Improving initial condition perturbations in a convection-permitting ensemble prediction system, *QJR Meteorol Soc.* 145, 993-1012.

- Coupling with ECMWF-ENS
- Ensemble-Jk

 Stochastic physics: Hybrid system HSPP; Combination of tendency and parameter perturbations

Wastl et al., 2019a: Independent perturbations for physics parametrization tendencies in a convection-permitting ensemble (pSPPT), *Geosci. Model Dev.*, 12, 261-273.

Wastl et al., 2019b: A hybrid stochastically perturbed parametrization scheme in a convection-permitting ensemble, Mon. Wea. Rev. 147, 2217-2230.

Wastl et al., 2019c: A comparison of different versions of the Stochastically Perturbed Parametrization Tendency (SPPT) scheme, Met. Z., online pre-published.

Image 1 of 7

Application of C-LAEF: Summer panel

Application of C-LAEF: Flood event

Application of C-LAEF: Flood event

Application of C-LAEF: Storm event

Application of C-LAEF: Storm event

Application of C-LAEF: Winter panel

Verification: August 2019

Verification: August 2019

FF10m

-1.5

-2.0

CLAEF-MED ECMWF-MED

Lead time (h)

C-LAEF: Conclusions & Outlook

- C-LAEF is running on the ECMWF HPC; Pre-operational mode started in July 2019; fully operational (with backup, archiving, verification, etc.) since November 2019
- C-LAEF has become an important forecasting tool at ZAMG in the 3 months since its operational implementation
- Operational forecasters are using it regularly (among the 3 most used models at ZAMG)
- Especially used in case of severe weather events (floods, storm events, thunderstorms)
- Some problems identified (2m diagnostics, underdispersive, problems with orographic precipitation, etc.)
- Not yet provided to customers, but many products are in preparation
- Upgrade to cy43 in autumn 2020
- 2 internal projects are dealing with C-LAEF (improvement of system, extension of probablistic products)