
Experiments with

CMake
Yurii Batrak (MET-Norway)

II·APR·MMXIX

TL;DR: using CMake could considerably reduce build time

Makeup CMake
make Ninja

Configuration 00:10:00 00:01:30 00:01:40
Full build 01:15:00 00:20:00 00:18:27

No-op build 00:06:50 00:00:40 00:01:35
Incremental build 00:07:00 00:01:20 00:02:22

Why should we care about the build system?

Makeup does a very good job compiling our system...

BUT

Research experiments often involve a “rapid refresh” approach
It takes a lot of time to recompile the system after changing a

single source file

THERE SHOULD BE A BETTER WAY!

Why should we care about the build system?

Makeup does a very good job compiling our system...

BUT

Research experiments often involve a “rapid refresh” approach
It takes a lot of time to recompile the system after changing a

single source file

THERE SHOULD BE A BETTER WAY!

Why should we care about the build system?

Makeup does a very good job compiling our system...

BUT

Research experiments often involve a “rapid refresh” approach
It takes a lot of time to recompile the system after changing a

single source file

THERE SHOULD BE A BETTER WAY!

Why should we care about the build system?

Makeup does a very good job compiling our system...

BUT

Research experiments often involve a “rapid refresh” approach
It takes a lot of time to recompile the system after changing a

single source file

THERE SHOULD BE A BETTER WAY!

Problems with Makeup-build

• In-house build system within a rather small community
• No feedback or support from outside our community
• Custom Perl-powered tools to configure the build
• Could be difficult for newcomers

• Long compile times both initial and incremental

• Full build takes more than an hour
• Add some minutes for Makeup_configure
• No-op build is not really no-op

• Users should know “when” and remember “to” submit Configure
job if sources are changed

• For some edits you could skip Makeup_configure
• But in some cases it is required to re-run Makeup_configure

• Not all dependencies are expressed within the build system

• Try to add Fortran flags to your config.*
• Good luck with convincing Makeup to rebuild something...

Problems with Makeup-build

• In-house build system within a rather small community
• No feedback or support from outside our community
• Custom Perl-powered tools to configure the build
• Could be difficult for newcomers

• Long compile times both initial and incremental
• Full build takes more than an hour
• Add some minutes for Makeup_configure
• No-op build is not really no-op

• Users should know “when” and remember “to” submit Configure
job if sources are changed

• For some edits you could skip Makeup_configure
• But in some cases it is required to re-run Makeup_configure

• Not all dependencies are expressed within the build system

• Try to add Fortran flags to your config.*
• Good luck with convincing Makeup to rebuild something...

Problems with Makeup-build

• In-house build system within a rather small community
• No feedback or support from outside our community
• Custom Perl-powered tools to configure the build
• Could be difficult for newcomers

• Long compile times both initial and incremental
• Full build takes more than an hour
• Add some minutes for Makeup_configure
• No-op build is not really no-op

• Users should know “when” and remember “to” submit Configure
job if sources are changed
• For some edits you could skip Makeup_configure
• But in some cases it is required to re-run Makeup_configure

• Not all dependencies are expressed within the build system

• Try to add Fortran flags to your config.*
• Good luck with convincing Makeup to rebuild something...

Problems with Makeup-build

• In-house build system within a rather small community
• No feedback or support from outside our community
• Custom Perl-powered tools to configure the build
• Could be difficult for newcomers

• Long compile times both initial and incremental
• Full build takes more than an hour
• Add some minutes for Makeup_configure
• No-op build is not really no-op

• Users should know “when” and remember “to” submit Configure
job if sources are changed
• For some edits you could skip Makeup_configure
• But in some cases it is required to re-run Makeup_configure

• Not all dependencies are expressed within the build system
• Try to add Fortran flags to your config.*
• Good luck with convincing Makeup to rebuild something...

Is it even possible to build ALADIN-HIRLAM NWP system with
CMake?

CMake in a nutshell:
• Build system generator
• Open-source
• Widely adopted, large community
• Fortran is a “first-class” citizen

Features of our source code:
• A LOT of generated sources
• Strongly coupled components
• Mixture of Fortran and C code

The best project structure for CMake is a directed acyclic graph

So, how difficult is to write a CMake build?

Generation of interface blocks

• List of generated interfaces should
be know at configure time

• Only the top-level subroutines and
functions require interface blocks

• These routines could be found
with a simple CMake script

• But it restricts the declarations to
use named end-statements

• Added target should be listed as a
dependency of the first library

1 set(all_ifaces "")

2 foreach(dir IN ITEMS

3 arpifs aladin ifsaux/ddh satrad)

4 hm_glob(Fortran

5 RECURSE

6 SOURCES src

7 DIRS ${dir})

8 hm_list_generated_interfaces(

9 QUIET

10 SILENT

11 SOURCES ${src}

12 INTERFACES ifaces)

13 list(APPEND all_ifaces "${ifaces}")

14 endforeach()

15

16 add_custom_target(

17 generate_interfaces

18 DEPENDS ${all_ifaces})

Generation of interface blocks

1 find_top_level_routines("foo.F90" top_level_routines ${ARG_QUIET})

2 # ... Invoke make_intfbl.pl ...

3 add_custom_command(

4 OUTPUT ${out_dir}/foo.intfb.h

5 COMMAND ${ENV} perl -I${makeup_dir} ${makeup_dir}/${generator} foo.F90

6

7 DEPENDS "foo.F90"

8 WORKING_DIRECTORY ${out_dir}

9

10 VERBATIM

11)

12 list(APPEND all_generated_interfaces "${out_dir}/foo.intfb.h")

Naı̈ve realisation that just calls make_intfbl.pl works, but...

...make_intfbl.pl is smart enough to not touch unmodified interfaces.

It could trigger generation on each rebuild after modifying a source file.

This could be avoided by using stamp files

Generation of interface blocks

1 find_top_level_routines("foo.F90" top_level_routines ${ARG_QUIET})

2 # ... Invoke make_intfbl.pl ...

3 add_custom_command(

4 OUTPUT ${out_dir}/foo.intfb.h

5 COMMAND ${ENV} perl -I${makeup_dir} ${makeup_dir}/${generator} foo.F90

6

7 DEPENDS "foo.F90"

8 WORKING_DIRECTORY ${out_dir}

9

10 VERBATIM

11)

12 list(APPEND all_generated_interfaces "${out_dir}/foo.intfb.h")

Naı̈ve realisation that just calls make_intfbl.pl works, but...
...make_intfbl.pl is smart enough to not touch unmodified interfaces.

It could trigger generation on each rebuild after modifying a source file.

This could be avoided by using stamp files

Generation of interface blocks

1 find_top_level_routines("foo.F90" top_level_routines ${ARG_QUIET})

2 # ... Invoke make_intfbl.pl ...

3 add_custom_command(

4 OUTPUT ${out_dir}/foo.intfb.h.stamp

5 COMMAND ${ENV} perl -I${makeup_dir} ${makeup_dir}/${generator} foo.F90

6 COMMAND ${CMAKE_COMMAND} -E touch ${out_dir}/foo.intfb.h.stamp

7 DEPENDS "foo.F90"

8 WORKING_DIRECTORY ${out_dir}

9 BYPRODUCTS ${out_dir}/foo.intfb.h

10 VERBATIM

11)

12 list(APPEND all_generated_interfaces "${out_dir}/foo.intfb.h")

Naı̈ve realisation that just calls make_intfbl.pl works, but...
...make_intfbl.pl is smart enough to not touch unmodified interfaces.

It could trigger generation on each rebuild after modifying a source file.

This could be avoided by using stamp files

Generation of interface modules

• SURFEX uses generated interface modules instead of interface blocks
• Generated interface modules are prepared by a call to the same function
• But returned modules list is added directly to the list of SURFEX sources

1 hm_glob(Fortran

2 SOURCES SURFEX_ALL_SRC

3 DIRS

4 ASSIM

5 GELATO

6 OFFLIN

7 SURFEX

8 TOPD

9 TRIP)

10 hm_list_generated_interfaces(

11 SURFEX

12 QUIET

13 SILENT

14 SOURCES ${SURFEX_ALL_SRC}

15 INTERFACES generated_interfaces)

16 list(APPEND SURFEX_ALL_SRC

17 "${generated_interfaces}")

Code generation: blacklist
• Code generation for blacklist is done by a pre-built compiler tool
• Blacklist compiler build configuration is straightforward
• CMake recognizes it as a dependency of the blacklist object

1 bison_target(

2 blacklist_parser

3 compiler/yacc.y

4 ${...}/y.tab.c)

5 flex_target(

6 blacklist_lexer compiler/lex.l

7 ${...}/blacklist_lexer.c)

8 add_flex_bison_dependency(

9 blacklist_lexer

10 blacklist_parser)

11

12 add_executable(blacklist_compiler

13 ${BLACKLIST_COMPILER_SRC}

14 ${BISON_blacklist_parser_OUTPUTS}

15 ${FLEX_blacklist_lexer_OUTPUTS})

16

17 set(BLACKLIST_FILE ${...}/mf_blacklist.b)

18 set(BLACKLIST_OBJ ${...}/C_code.o)

19 add_custom_command(

20 OUTPUT ${BLACKLIST_OBJ}

21 COMMAND ${CMAKE_COMMAND}

22 -E copy ${BLACKLIST_FILE}

23 ${...}/mf_blacklist.b

24 COMMAND ${UTIL_DIR}/makeup/blcomp

25 -c -C ${CMAKE_C_COMPILER}

26 -x $<TARGET_FILE:blacklist_compiler>

27 mf_blacklist.b

28 DEPENDS

29 blacklist_compiler

30 ${BLACKLIST_FILE}

31 WORKING_DIRECTORY

32 ${...}

33 VERBATIM)

Code generation: ODB

• Generator tool odb98.x is built in a regular way
• C code is generated in three steps: tables, views and <...>_Sstatic.c
• List of SQL tables should be known at configure time
• It could be obtained from *.h files within the ddl.<...> directories

1 set(cma_limits

2 NMXENKF NMXENDA NMXFCDIAG NMXUPD)

3 list(JOIN cma_limits "|" cma_limits_regex)

4 file(STRINGS ddl.${ARG_ODBASE}/cma.h limits

5 REGEX "^SET[\t]+\\$(${cma_limits_regex})[\t]*=[\t]*[0-9]")

6 foreach(item IN LISTS limits)

7 string(REGEX MATCH

8 "^SET[\t]+\\$([A-Za-z0-9_]+)[\t]*=[\t]*([0-9]+)"

9 match_limit "${item}")

10 if(match_limit)

11 set(${CMAKE_MATCH_1} ${CMAKE_MATCH_2})

12 else()

13 message(FATAL_ERROR "Unable to parse limit: ${item}")

14 endif()

15 endforeach()

Code generation: ODB
16 file(GLOB cma_headers LIST_DIRECTORIES false ddl.${ARG_ODBASE}/*.h)

17 foreach(header IN LISTS cma_headers)

18 file(STRINGS ${header} table_defs REGEX "^[\t]*CREATE[\t]+TABLE")

19 string(REGEX REPLACE "\\[" "@@@LBRA@@@" table_defs "${table_defs}")

20 string(REGEX REPLACE "\\]" "@@@RBRA@@@" table_defs "${table_defs}")

21 foreach(definition IN LISTS table_defs)

22 string(REGEX MATCH

23 "^[\t]*CREATE[\t]+TABLE[\t]+([A-Za-z0-9_]+)"

24 match_name "${definition}")

25 if(match_name)

26 set(table_name ${CMAKE_MATCH_1})

27 string(REGEX MATCH

28 "@@@LBRA@@@([0-9]+):\\$([A-Za-z0-9_]+)@@@RBRA@@@"

29 match_vector "${definition}")

30 if(match_vector)

31 set(first_member ${CMAKE_MATCH_1})

32 set(last_member ${${CMAKE_MATCH_2}})

33 foreach(member RANGE ${first_member} ${last_member})

34 list(APPEND expected_tables

35 "${ARG_ODBASE}_T_${table_name}_${member}.c")

36 endforeach()

37 else()

38 list(APPEND expected_tables "${ARG_ODBASE}_T_${table_name}.c")

39 endif()

40 endif()

41 endforeach(definition)

42 endforeach(header)

Code generation: ODB
43 set(cma_generated

44 ${expected_tables}

45 ${ARG_ODBASE}.c

46 ${ARG_ODBASE}.h)

47

48 set(cma_source_dir ${CMAKE_CURRENT_SOURCE_DIR}/ddl.${ARG_ODBASE})

49 set(cma_generated_dir ${CMAKE_CURRENT_BINARY_DIR}/ddl.${ARG_ODBASE})

50 file(MAKE_DIRECTORY ${cma_generated_dir})

51

52 set(cma_generated_src "")

53 foreach(source_file IN LISTS cma_generated)

54 list(APPEND cma_generated_src "${cma_generated_dir}/${source_file}")

55 endforeach()

56

57 set(cma_ddl_file ${cma_source_dir}/${ARG_ODBASE}.ddl)

58 set(odb_compiler_flags_file ${cma_source_dir}/odb98.flags)

59 set(odb_compiler_flags ODB_COMPILER_FLAGS=${odb_compiler_flags_file})

60 add_custom_command(

61 OUTPUT ${cma_generated_src} ${cma_generated_dir}/${ARG_ODBASE}.ddl_

62 COMMAND ${odb_compiler_flags} $<TARGET_FILE:odb_compiler> -O3 -C

63 -DCANARI -UECMWF -c -I ${cma_source_dir} -l ${ARG_ODBASE}

64 -o ${cma_generated_dir} ${cma_ddl_file}

65 DEPENDS odb_compiler ${cma_ddl_file} ${odb_compiler_flags_file}

66 WORKING_DIRECTORY ${cma_generated_dir}

67 COMMENT "Generating ${ARG_ODBASE} tables C-sources"

68 VERBATIM)

Code generation: ODB
69 file(GLOB cma_sqls LIST_DIRECTORIES false ddl.${ARG_ODBASE}/*.sql)

70 set(cma_static_generated_src ${cma_generated_dir}/${ARG_ODBASE}_Sstatic.c)

71 add_custom_command(

72 OUTPUT ${cma_static_generated_src}

73 COMMAND ${UTIL_DIR}/makeup/gen_static ${ARG_ODBASE} ${cma_sqls}

74 DEPENDS ${UTIL_DIR}/makeup/gen_static ${cma_sqls}

75 WORKING_DIRECTORY ${cma_generated_dir}

76 VERBATIM)

77 foreach(sql_file_path IN LISTS cma_sqls)

78 get_filename_component(file_name_we ${sql_file_path} NAME_WE)

79 get_filename_component(sql_file_name ${sql_file_path} NAME)

80 set(compiled_sql_file

81 "${cma_generated_dir}/${ARG_ODBASE}_${file_name_we}.c")

82 add_custom_command(

83 OUTPUT ${compiled_sql_file}

84 COMMAND ${CMAKE_COMMAND} -E copy_if_different

85 ${sql_file_path} ${cma_generated_dir}

86 COMMAND ${odb_compiler_flags} $<TARGET_FILE:odb_compiler> -O3 -C

87 -DCANARI -UECMWF -c -I ${cma_generated_dir} -l ${ARG_ODBASE}

88 -o ${cma_generated_dir} -i -w ${sql_file_name}

89 DEPENDS odb_compiler ${sql_file_path}

90 ${ODB_COMPILER_FLAGS_FILE} ${cma_generated_dir}/${ARG_ODBASE}.ddl_

91 WORKING_DIRECTORY ${cma_generated_dir}

92 VERBATIM)

93 list(APPEND cma_compiled_sql_to_c_src ${compiled_sql_file})

94 endforeach()

High-level structure of the source code

ifsaux

aladin

algor

arpifs

biper

blacklist

coupling

etrans

mpa

mse odb

satrad

surf

surfex trans

utilities

Main dependencies between the
code components
• a lot of cycles between the

various libraries
• Makeup build operates on the

source-file level
• CMake resolves inter-project

dependencies over targets
• Direct translation to CMake is

not possible thanks to Fortran
modules

Why it is difficult to deal with cycles and modules

1 add_library(A STATIC ${LIB_A_SRC})

2 add_library(B STATIC ${LIB_B_SRC})

3 target_link_libraries(A B)

4 target_link_libraries(B A)

5

6 add_executable(main ${PROG_SRC})

7 target_link_libraries(main A)

• CMake allows cyclic dependencies for
static libraries and resolves repetitions at
the link time: main is linked to A B A B

• Compilation order is not enforced

• If a component depends on a Fortran module from another component
this dependency enforces the compilation order

• CMake is unable to compile the component in the correct order because
of the cyclic dependency

• Build system behaviour becomes indeterministic, it could succeed or fail
depending on the number of build processes

Split components to avoid cycles between Fortran modules

aladin-module

aladin

mse

algor-boot

algorarpifs-module

arpifs

trans-module

utilities

arpifs-boot

ifsaux

mse-bootodb-module mpa-turb

biper-module

biper

etrans-module

etrans

ifsaux-boot

mpa-chem-module

mpa-micro

mpa-micro-module

mpa-chem

mpa-conv-module

mpa-conv

mpa-turb-module

odb-dummy

odb satrad-module

satrad

surf-module

surfsurfex-core

surfex-aro

transcoupling

blacklist

mpa-dummy

odb-port

CCMAECMA

surfex-boot

Now module libraries form a DAG

arpifs-module

aladin-module algormse-boot

mse

odb-module

ifsaux

algor-boot

biper-module

trans-module

etrans-module

mpa-micro-module

mpa-chem-module mpa-turb-module

mpa-conv-module

surfex-core

satrad-module

surf-module

surfex-aro

ifsaux-boot

arpifs-boot

surfex-boot

Note on SURFEX and MSE

• SURFEX and MSE libraries form a strongly coupled pair
• MSE is naturally a library that depends on SURFEX
• But SURFEX calls routines from MSE for IO-related tasks
• It is not possible to resolve cycles without link-time tricks

• Untying could be done by introducing polymorphic IO in SURFEX
• Would require substantial code refactoring
• But modified code has potential for a more clear structure

Note on SURFEX and MSE

• SURFEX and MSE libraries form a strongly coupled pair
• MSE is naturally a library that depends on SURFEX
• But SURFEX calls routines from MSE for IO-related tasks
• It is not possible to resolve cycles without link-time tricks

• Untying could be done by introducing polymorphic IO in SURFEX
• Would require substantial code refactoring
• But modified code has potential for a more clear structure

Note on SURFEX and MSE

Current IO interface
1 ! write_surf.F90

2 INTERFACE WRITE_SURF
3 ! Modified for clarity

4 MODULE PROCEDURE WRITE_SURFX1
5 END INTERFACE WRITE_SURF
6

7 SUBROUTINE WRITE_SURFX1(HPROGRAM, <...>)
8 ! ...

9 IF (HPROGRAM==’AROME ’) THEN
10 #ifdef SFX_ARO

11 CALL WRITE_SURFX1_ARO(<...>)
12 #endif

13 END IF
14 IF (HPROGRAM==’OFFLIN’) THEN
15 #ifdef SFX_OL

16 CALL WRITE_SURFX1N1_OL(<...>)
17 #endif

18 END IF
19 ! ...

20 END SUBROUTINE WRITE_SURFX1
21

22 ! Usage:

23 CALL WRITE_SURF(HPROGRAM, <...>)

Polymorphic IO interface
1 TYPE, ABSTRACT :: SURFEX_IO_INTERFACE_t
2 CONTAINS
3 PROCEDURE(IWRITE), PASS, DEFERRED :: &
4 WRITE_SURFX1

5 ! ...

6 GENERIC :: WRITE_SURF => &
7 WRITE_SURFX1, <...>

8 END TYPE SURFEX_IO_INTERFACE_t
9

10 ABSTRACT INTERFACE
11 SUBROUTINE IWRITE(THIS, <...>)
12 IMPORT :: SURFEX_IO_INTERFACE_t
13 CLASS(SURFEX_IO_INTERFACE_t) :: THIS
14 ! ...

15 END SUBROUTINE IWRITE
16 END INTERFACE
17

18 ! Usage

19 CLASS(SURFEX_IO_INTERFACE_t), &
20 POINTER :: IO => NULL()
21 ! Allocate once, during init

22 ALLOCATE(AROME_IO_t :: IO)
23

24 CALL IO%WRITE_SURF(<...>)

POC CMake build for ALADIN-HIRLAM NWP system

• Only MASTERODB is built for this test case
• Two-step linking of the Makeup build with automatic generation of dummy

routines is replaced by pre-generated dummies.c

> cd Harmonie-cmake

> mkdir build && cd build

> FC=ifort CC=icc cmake ../src/ -DCMAKE_BUILD_TYPE=Release -DNETCDF_DIR=<...> \
-DHDF5_DIR=<...> -Deccodes_DIR=<...> -Dbufr_DIR=<...> -Dgribex_DIR=<...>

> # ... CMake output is omitted ...

> make -j32

> # ... output is omitted ...

> [100%] Built target odb-port-static

> Scanning dependencies of target master

> [100%] Building Fortran object arpifs/CMakeFiles/master.dir/programs/master.F90.o

> [100%] Linking Fortran executable master

> [100%] Built target master

>

POC CMake build for ALADIN-HIRLAM NWP system

• Only MASTERODB is built for this test case
• Two-step linking of the Makeup build with automatic generation of dummy

routines is replaced by pre-generated dummies.c

> cd Harmonie-cmake

> mkdir build && cd build

> FC=ifort CC=icc cmake ../src/ -DCMAKE_BUILD_TYPE=Release -DNETCDF_DIR=<...> \
-DHDF5_DIR=<...> -Deccodes_DIR=<...> -Dbufr_DIR=<...> -Dgribex_DIR=<...>

> # ... CMake output is omitted ...

> make -j32

> # ... output is omitted ...

> [100%] Built target odb-port-static

> Scanning dependencies of target master

> [100%] Building Fortran object arpifs/CMakeFiles/master.dir/programs/master.F90.o

> [100%] Linking Fortran executable master

> [100%] Built target master

>

Timings for CMake and Makeup builds

Tests were performed on nebula – MET’s research HPC

Makeup CMake
make Ninja

Configuration 00:10:00 00:01:30 00:01:40
Full build 01:15:00 00:20:00 00:18:27

No-op build 00:06:50 00:00:40 00:01:35
Incremental build 00:07:00 00:01:20 00:02:22

Note that Makeup builds all executables and CMake only MASTERODB
(but the full set of libraries is built in both cases)

If you got interested in CMake for Fortran projects and want to try it but have a
feeling that building the whole ALADIN-HIRLAM system is a bit too much...

...you could check the CMake-powered fork of the Open-SURFEX platform

available under

https://github.com/joewkr/open-SURFEX

https://github.com/joewkr/open-SURFEX

Questions?

