

Overview of RC LACE data assimilation activities

Benedikt Strajnar (AL) & contributors from LACE DA

ARSO METEO Slovenia

Contents

- Status overview (RC LACE)
- Developments towards operational hourly RUC
- Diagnostics of background-error covariances
- Assimilation of radar observations
- Diagnosis of VarBC performance in LAM
- Sea-atmosphere coupling: assimilation aspects
- Outlook

Operational status summary

DA	AT ALARO	AT AROME	CR ALARO	CZ ALARO	HU ALARO	HU AROME	SK ALARO	SI ALARO	RO ALARO (preoper.)
Resol.	4.8L60	2.5L90	4L73	<mark>2.3</mark> L87	8L49	2.5L60	4.5L63	4.4L87	6.5 <mark>L60</mark>
Cycle	40t1	40t1	38t1	43t2_bf8	38t1_bf3	38t1_bf3	40t1	40t1	40t1
LBC	IFS 3h (lag.)	IFS 1h (lag.)	IFS 3h (lag.)	ARP 3h	IFS 3h (lag.)	IFS 1h (lag.)	ARP 3h	IFS 1h/ 3h (lag.)	ARP 3h
Method	OI + dyn. adapt	OI_main MESCAN + 3DVar	OI + 3DVar	OI +BlendVar	OI + 3D- Var	OI_main + 3D-Var	OI + DF Blending	OI + 3D- Var	OI + 3D-Var
Cycling	6h	3h	6h	6h	6h	3h	6h	3h	6h
B-matrix	-	Downscale d LAEF	NMC	Downscaled AEARP	ALARO EDA	AROME EDA	-	Downsc. ECMWF	Downsc. AEARP
Initial.	DFI	No (SCC)	No (SCC)	IDFI in prod., SCC			No	No (SCC)	No (SCC)
Special / new observ.	Add. snow melt.	Snowgrid +SAT snow init.	Mode- S MRAR	Mode-S MRAR <mark>Mode-S EHS</mark> M		GNSS ZTD		HRW, IASI, ASCAT, Mode-S EHS	

Hourly-updated DA systems

- Ongoing efforts in Austria (AROME -RUC 1.3 km, talk F. Meier, AROME 1.2)
- Hungary: tests with hourly cycling in AROME 2.5 km
 - Combined hourly 3D-Var with OI (CANARI) at different time frequency (1h, 3h, 6h)
 - 3-6 h OI for surface performed better than hourly analysis!

Properties of background errors in 3D-Var

- Comparative study sampling methods (NMC, ENS, ENSLBC) A. Stanešić (CR)
 - ENS-type methods methods outperform NMC method in terms of forecast scores
- Sensitivity of ENS methods
 - Large sensitivity of high-level humidity
 - Tuning (REDNMC) is able to mitigate the impact on scores, detrimental impact on scores at 2.3 km

RMS reduction of ENS vs. NMC

q - background error profile

Progress in surface data assimilation – EKF

- SODA in SURFEX 8.1 (Austria)
 - Extension of control variable set to TG, WG, WGI 1-8.
 - Possibility to use locally diagnosed observation errors, using triple collocation of SCATSAR-SWI, AMSR2 and SURFEX WG data
 - Assimilation of SCATSAR_SWI (ASCAT + Sentinel) soil observations (layers 1-8) shows significant positive impact on 2 m temperature T2M in short-range AROME (CY40T1 with HIRLAM-modifications to use ISBA-DIF) – in review for GMD (Schneider et al.)

Progress in surface data assimilation – EKF (2)

- Tests with offline SURFEX at 1 km and 4 km (Slovakia, V. Tarjani):
 - Developed a novel method for computation of the Jaccobians (1-column)
 - Tests with snow assimilation
 - Screen-level (CANARI) analysis replaced by high-resolution INCA analysis (T2m, RH2m) to deduce soil increments

Assimilation of OPERA data: HOOF homogenization tool

- Several LACE members started to test OPERA data (BATOR cy40, cy43)
- Although the data comes in a common format (ODIM), a preprocessing step was still found to be necessary
- Homogenization of OPERA OIFS Files (HOOF) properties:
 - Splits 15-min aggregates to single measurements
 - Organizes/rearranges incoming data:
 - one data set for each elevation
 - all measurements has the same quality flags
 - Fills in the (specific) metadata from namelist if missing
 - Keeps only what is needed/requested, e.g. reflectivity, wind
 - Tunable by namelist
 - Written in Python
- This enables joint processing of data from ~150 radars in Europe.

Assimilation of OPERA data: HOOF homogenization tool (2)

- Namelist items:
 - Supported file formats
 - Requested variables
 - Requested quality groups
 - Common radar attributes/defaults
 - Specific radar attributes/defaults
- Metadata browser
 - Enables browsing for metadata and containing datasets
- Available for testing at RC LACE forum http://www.rclace.eu/forum/viewtopic.php?f= 37&t=582

Attribute Names	Attribute Values	Number	Attribute Files
Conventions	-0.00392156862745098		T_PAZZ41_C_EUOC_20180814000000_silis.h5 2
dataset/data/how/CSR	0.00392156862745098	267	T_PAZZ41_C_EUOC_20180306000000_bewid. 3
dataset/data/how/LOG			T_PAZZ41_C_EUOC_20180306001500_nosmn 1
dataset/data/how/SQI			T_PAZZ41_C_EUOC_20180306000000_dkste.f 2
dataset/data/what/gain			
dataset/data/what/nodata			
dataset/data/v/hat/offset			
dataset/data/what/quantity			
dataset/data/what/undetect			

Assimilation of reflectivity

Austria: assimilation of reflectivity challenging when appropriate first guess (with existing convection) is not available.

10/13

Diagnosis of VarBC in LAM

- Several experiments with adaptivity of predictors for radiances (P. Benaček)
 - Static tuning of the adaptivity
 - Dynamic adaptivity
 - Tuning improves OMG in the assimilation cycle, both methods outperform the reference using global coefficients

Reduction of RMS of tuned VarBC experiments with respect to using global coefficients (ARPEGE)

Sea-atmosphere coupling: data assimilation aspects

- Application of 2-way coupling into ALADIN 4.4 km assimilation cycle (SI)
 - Two-way coupling improves the SST, compared to 1-way coupled ocean model
 - Fresh global model SST analysis superior to coupled runs with weekly or no analysis
 - → frequent ocean assimilation is necessary to improve NWP (precipitation)

x-axis: strength of coupling (1 – operational, 6- full coupling)

(2019), QJRMS

Outlook

- Further progress on radar assimilation (reflectivity, towards solution for wind)
- Numerous 1h RUC setups
- Further tests with additional classical observations (OSCAT & HSCAT scatterometers, High res. AMVs, ATMS radiances, GNSS-derived observations: ZTD, STD, GPS-RO)
- New observations (extension of Mode-S derived data, microwave attenuation in telecommunication links)
- Surface DA: towards operational EKF

