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Strategy for research on dynamical cores

■ There are many concerns about current dynamical cores :

― Scalability

― Steep slopes

― Conservation of variables...
■ Scalability : still not a such a big issue “only” 15 % of forecast 

time spent in communication in AROME (on our current 
operational domain 1536x1440 grid points on 179 nodes and 
7160 physical cores)

■ Steep slopes : we have the impression it could be difficult to go 
beyond 200m of resolution.

■ Conservation of variable : it is more a concern for chemistry or 
climate runs
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Strategy for research on dynamical cores

■ Still, if we want to improve the negative points listed before, one 
has to change the dynamical core.

■ The strategy we follow is to gradually modify the causes :
■ Scalability : it is link to the intense global communication induced 

by the fourier transforms (this is unavoidable since Fourier 
transform or Legendre transform in global are highly non-local 
operators). It is possible to compute derivatives locally, but the 
implicit problem is trivial in spectral space (trigonometric 
polynoms are eigenvalues of that operator) and not in gridpoint 
space.

■ Steep slopes : going from a spectral model to a gridpoint model 
might help us, another alternative is investigated :   quasi-elastic 
system.
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Strategy for research on dynamical cores

■ For scalabilities issues the solution is to perform all the 
computations in gridpoint space. Consequently the pseudo-
helmholtz implicit equation has to be solved in grid point space, 
leading us to study the performance of grid point solvers with our 
system of equations (part 1 of the talk). 

■ If we want to keep a single global and local dynamical core it is 
also important to be able to perform correctly computations on 
the sphere especially derivatives (part 2).

■ To potentially improve steep slope issues a solution could be to 
use another set of primitive equations (part 3) or to use a 
different (more complex) semi-implicit operator (part 1)
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1. Using gridpoint solvers for implicit 
problem
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Using gridpoint solvers for implicit problem

■ In the current Semi-implicit algorithm after variable elimination 
and projection on vertical modes, 2*Nlev 2D implicit equations 
are solved : 

■ Equation (1) “Helmholtz type” is solved in spectral space where 
the solution is trivial.

(Id−λ i
2 ∇2)X (x⃗ )=F ( x⃗)        (1)
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Using gridpoint solvers for implicit problem

■ The reference state for the linearization of the implicit operator 
does not include orography. With orography linearization leads 
to a more general operator depending on x, no more projection 
on vertical modes is possible, coefficients are not constant on x.

■ With a grid point solver, system (2) can be solved but not as 
easily as equation (1) of previous slide.

■ It is possible that current instabilities with high slopes might be 
linked with the implicit system not taking account orography. 

(Id−Bx⃗ ∇
2)X( x⃗ ,η)=F( x⃗ ,η)         (2)
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Using gridpoint solvers for implicit problem

■ Direct methods are too expensive. 
■ Simple iterative methods such as Gauss-Seidel, Jacobi, SOR…. 

are not efficient enough.
■ Quasi-Newton methods can be used to solve linear problem but 

require in general to store and approximation of the Hessian 
(that is to say an approximation of A), that is too large (although 
some memory inexpensive version exist).
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Using gridpoint solvers for implicit problem

■ The most successful class of methods for our problem are 
Krylov space methods ; the solution is seek in the successive Kn 
vector spaces for a Ax=b system :

■ Example : Conjugate gradient, Biconjugate gradient, 
Generalized Minimal Residual...

■ Those methods are the most efficient for sparse matrices with a 
dominant diagonal.

■ Among all Krylov space methods, Generalized Minimal Residual 
(GMRES) is the more optimal in term of number of iterations 
(meaning that it requires the least iterations for a given 
accuracy). 

Kn=span {b,Ab ,A2 b... An−1 b}
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Using gridpoint solvers for implicit problem

■ The current implicit problem  leads to 2*Nlev 2D discrete implicit 
system

■ Operators                are (Nx*Ny)² sparse matrices that depend 
on the vertical mode. In matrix writing on a given line the number 
of non-zero coefficient depends on the choice of the order for 
the derivative operator (9 non-zero coefficients for a 4th order 
derivative).

(I−λ i
2 ∇ 2)di

n+1=d*

for i=1...Nlev

then
(I−λ2 ∇ 2)Di

n+1=D*

for i=1...Nlev

(I−λ i
2 ∇ 2)
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Using gridpoint solvers for implicit problem

■ Test were performed with the iterative solver GMRES and the 
same variable elimination + projection into vertical modes

■ Test with hydrostatic orography  (5km length, 200m height)
■ dx=2000m, dt=60s, predictor corrector. The iterative solver uses 

16 iterations at each time step, that is to say one iteration every 
4s

experiment reference
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Using gridpoint solvers for implicit problem

■ Positive aspects :

― The condition number of the implicit problem is ~ CFL² that is 
to say ~100. That corresponds to quite well conditioned 
problems.

― In term of communications, roughly, the number of 
communications required for a given forecast lead time 
seems to be equivalent to the ones in a HEVI model.

― If results are confirmed in 3D, that could be the first step for 
moving from a spectral model to a full grid-point model.

■ Negative aspects :

― The number of iterations can depend on the meteorological 
situation (not very convenient for operations).

― Memory cost can be high for GMRES, other algorithms 
(congrad) with low recursivity require a few more iterations.
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2. Circumventing Pole problem for solving 
PDES in spherical coordinates with local 

algorithms
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Circumventing Pole problem for solving PDES in
spherical coordinates with local algorithms

■ Investigate whether spherical coordinates with unstaggered 
reduced lat-lon grids really makes life impossible or not, 
especially in view of local/scalable algorithms.

Why “attractive” ?
■ a global orthogonal coordinate system with simple differential 

operators; high-orders schemes quite easy 
■ reduced lat-lon grid is semi-structured – transparent use of (i, j)
■ grid cells may be viewed as quadrilaterals

Inconvenience
■ curvature is unbounded at poles, this generates a variety of 

problems
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Circumventing Pole problem for solving PDES in
spherical coordinates with local algorithms

■ Try to keep as much as possible of properties of spectral 
models:

―  high-order space-accuracy

―  totally unstaggered grid

―  reduced lat-lon grid quasi uniform physical resolution
■ Space-discrete algorithms as simple and efficient as possible:

― Finite differences at least to begin (FD2, FD4, FD6, FD8).
■ Prototype : Shallow Water model.
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Circumventing Pole problem for solving PDES in
spherical coordinates with local algorithms

■ Governing equations

― Eulerian form with (u, v ) wind components
■ Discretization :

― lat-lon grid: regular ∆φ, regular ∆λ(φ)

― unstaggered A-grid, no points at poles

― Meridionally, tests made with FD8 (stencil width = 9)

― Close vicinity of Pole: Fourier transform method (FFT) along 
λ

― Fourier truncation variable with latitude : M(φ)

― Away from Poles: Sine-Cosine Lagrange (SCL) 
representation along λ

(similar to FD but respects the 2π periodicity of fields).
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Circumventing Pole problem for solving PDES in
spherical coordinates with local algorithms

■ Requirements :

1) Always use true scalars (u cos φ, v cos φ) instead of pseudo-
scalars (u, v ) for evaluating Vorticity and Divergence

2) Increase the number of grid points on few latitude circles to avoid a 
pole problem similar to “Courtier and Naughton 1994” problem

3) Use different boundaries conditions at poles for zonal average of 
fields <ψ> than for the deviation ψ’.
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Circumventing Pole problem for solving PDES in
spherical coordinates with local algorithms

■ Test flow : Polar Solid Body Rotation
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Circumventing Pole problem for solving PDES in
spherical coordinates with local algorithms

V(t) minus V(0), should remain 0 since the flow is stationnary.

CN94 and BC problems not solved

BC problems 
not solved

(ZOOM)
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3. A quasi-elastic semi-implicit dynamical 
system in mass-based coordinate
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A quasi-elastic semi-implicit dynamical system
 in mass-based coordinate

■ Objective : Enhance the stability of AROME non-hydrostatic 
(NH) model by suppressing the most restrictive fast dynamical 
process : « NH compressibility ».

      
■ A possible solution : Design a set of approximate non-

hydrostatic equations in mass-based coordinate, viable at small 
and large scales, that are free from the vertically-propagating 
acoustic wave.

■ Unified NH system of Arakawa and Konor (2009) in z-
coordinate.

■ Guidelines : Exploit Arakawa and Konor’idea together with 
Laprise (1992) formalism. 
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A quasi-elastic semi-implicit dynamical system
 in mass-based coordinate

■ Quasi-elastic set of 
prognostic equations in 
mass-based η-coordinate :

■ Additional soundproof 
divergence constraint

■ Useful diagnostic 
relationships 

NB : Close link with already existing 
HPE and EE mass-based Systems.



Joint 27th ALADIN Workshop & HIRLAM All Staff Meeting

A quasi-elastic semi-implicit dynamical system
 in mass-based coordinate

■ The Quasi-elastic system is integrated with a newly derived 
semi-implicit time scheme, suggested by Voitus et al. (2017).

Stability diagram EE-3TL-SI with d4, 
(courtesy of Bénard et al., 2005)

Stability diagram QE-3TL-SI with d3, 
(Voitus et al., 2017)

● White colored regions indicate 
    ranges of apparent stability.

(T-T*)/T* 
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● The stability property of QE 3TL-SI in presence 
    orography is close to the one of HPE 3TL-SI. 
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A quasi-elastic semi-implicit dynamical system
 in mass-based coordinate

HPE QE

● Potential flow test-case : The basic-state is defined by : U=15 m/s, N=0.02 s, a=100 m, h=100 m 
    Settings of the experiment : Δx=20 m, Δt=0.4 s, Δη is chosen so that Δz≈20 m.

● QE system better captures the small-sclale features of the flow
     than HPE one (not a scoop, but nevertheless expected).
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Conclusions

■ Grid point solvers might be efficient enough for grid-point 
computations, replacing global communications by eulerian local 
ones with an efficiency close to the HEVI models.

■ The global model might follow the same path if we carefully 
compute the derivatives on the reduced gaussian grid. 

■ Steep slopes issues might be more problematic than scalability, 
if we are not able go beyond 500m resolution, is the quasi-
elastic system solving the issues we are facing today ?



Joint 27th ALADIN Workshop & HIRLAM All Staff Meeting

THANK YOU FOR YOUR ATTENTION
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