PSEUDO-DYNAMIC SEA-ICE COVER

AROME-Arctic

Yurii Batrak (MET-Norway)

 $XXX \cdot MAR \cdot MMXX$

Sea ice in operational AROME-Arctic lacks any dynamics...

Ice thickness on 15 February 2019

- SICE is one-dimensional and the sea-ice grid cells are "pinned" to their locations
- As result ice field show artificial features and unrealistic evolution
- The same problem appears in the snow cover over sea ice

Sea ice in operational AROME-Arctic lacks any dynamics...

Ice thickness on 15 February 2019

Snow thickness on 15 February 2019

... but there should be a way to emulate ice drift

Ice thickness on 15 February 2020

Snow thickness on 15 February 2020

Applying the ice drift from TOPAZ4 seems to be an option

TOPAZ4 and AROME-Arctic sea ice on 1 April 2019

TOPAZ4:

- pan-Arctic 12.5 km domain
- 10-day forecasts on daily basis
- EnKF data assimilation system

TOPAZ5 with 6 *km* resolution is on its way and should be available in 2020.

How to apply the external ice drift data?

Eulerian approach

$$\frac{\partial F}{\partial t} + u \frac{\partial F}{\partial x} + v \frac{\partial F}{\partial y} = 0$$

- would work on the AA grid
- should be applied to each variable
- not so straightforward boundaries

Lagrangian approach

$$\frac{dF}{dt} = 0$$

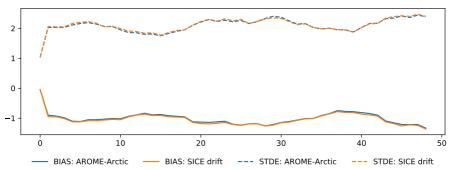
or

- more steps to deal with particles
- only one time loop
- straightforward boundary strategy

For this exercise the Lagrangian approach was used to transform the sea-ice cover variables in AROME-Arctic

Why the number of particles matters?

- put a particle in each ice grid cell
- advect it following TOPAZ4 drift
- aggregate particles on the grid


Why the number of particles matters?

- put particles in each ice grid cell
- advect them following TOPAZ4 drift
- aggregate particles on the grid
- coarser grid requires more particles
- 10×10 subdivision for AA grid

Verification scores from coastal stations are not so impressive

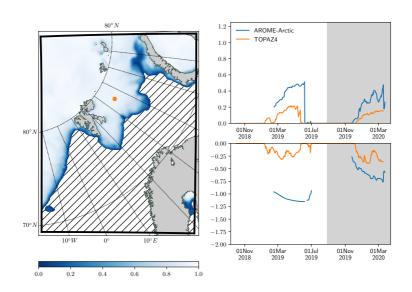
- experimental setup shows lower T2M for Svalbard stations mainly due to drift of the AA-accumulated thick ice towards the ice edge
- when all old ice is removed, T2M is expected to be higher than in AA

Model ice surface temperature compared to MODIS NRT IST shows potential improvement

Operational AROME-Arctic *x*-axis: MODIS, *y*-axis model

- TOPAZ ice and snow covers are generally thinner than in AA
- thinner ice drifts from boundaries inside the domain and reduces the mean ice thickness
- as a result, experiment output shows warmer ice surface than the operational model

Model ice surface temperature compared to MODIS NRT IST shows potential improvement


Experimental configuration *x*-axis: MODIS, *y*-axis model

- TOPAZ ice and snow covers are generally thinner than in AA
- thinner ice drifts from boundaries inside the domain and reduces the mean ice thickness
- as a result, experiment output shows warmer ice surface than the operational model

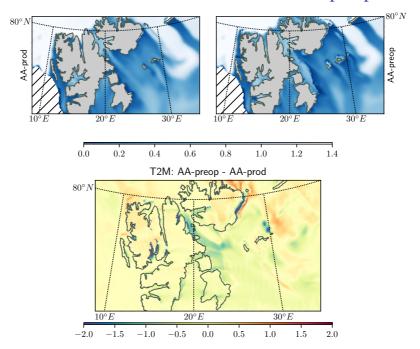
What about the land-fast ice?

- current approach does not take into account the areas of land-fast ice
- and neither TOPAZ nor IFS resolve land-fast ice
- missing land-fast ice could lead to warm bias due to underestimated ice cover in coastal areas

What about the land-fast ice?

- current approach does not take into account the areas of land-fast ice
- and neither TOPAZ nor IFS resolve land-fast ice
- missing land-fast ice could lead to warm bias due to underestimated ice cover in coastal areas

 this problem could be alleviated by using an external dataset which would define the fast-ice areas and updating SIC accordingly


Ice charts as a source of land-fast ice information

- ice charts are manually produced by the ice service on the daily basis
- no fresh ice charts on the weekends and public holidays, for these days data from the previous available chart are used
- spatial resolution is 1 kilometre
- for the grid cells with ice cover reported as fast-ice according to ice charts SIC is set to 100%
- ice drift speed is also set to zero

Ice chart from 20 March 2020 with fast-ice areas highlighted

Effect of landfast ice in AROME-Arctic preop...

Effect of landfast ice, well, and XRIMAX

So, what are the benefits?

- new setup removes problematic zones of extensive snow accumulations
- maximum ice age within the domain is limited by the inflow of new ice
- externalized approach, does not require source code modifications

So, what are the benefits and drawbacks?

- new setup removes problematic zones of extensive snow accumulations
- maximum ice age within the domain is limited by the inflow of new ice
- externalized approach, does not require source code modifications
- code requires EPYGRAM to manipulate FA files
- new dependency on TOPAZ4 and ice charts data, and need to transfer these data to HPC from local infrastructure
- external drift is applied at 00, 06, 12 and 18 UTC and this takes about a minute of real time for AROME-Arctic grid and 10×10 subdivisions
- mismatch between TOPAZ4 and AROME-Arctic ice cover could lead to unrealistic drift patterns

Questions?