

HarmonEPS developments - SPP and SPPT

Inger-Lise Frogner, Ulf Andrae and Pirkka Ollinaho - SPP Alan Hally, Karoliina Hamalainen and Janne Kauhanen - SPPT

With help from

Ole Vignes, Andrew Singleton, Harold Mc Innes, Karl-Ivar Ivarsson, Wim de Rooy, Mihály Szűcs, ...

In HarmonEPS you have the possibility to perturb:

- Initial conditions using nesting model and/or observation perturbations (EDA)
- Surface initial conditions (slightly modified MF code)
- LBCs using nesting model

For model uncertainty we have

- multi-physics with its pros and cons
- SPPT with not too convincing results in earlier tests

It is about time we get a scheme for model uncertainty that performs better - decided to investigate SPPT in more depth and in parallel to develop SPP

What is SPPT and what is SPP?

SPPT - Stochastic Perturbation of Parameterisations Tendencies:

 Perturbing the output of the net physic tendencies with 2D random multiplicative noise in a different way for each ensemble member

SPP - Stochastically perturbed parameterizations:

- Perturbing uncertain parameters in the parameterizations.
- SPP samples a log-normal distribution for the parameters with independent distributions for each parameter and variable
- Perturbations evolve in time and space according to a pattern generator as for SPPT

A new pattern generator

- Due to problems with the default pattern generator for SPPT in LAM we switched to SPG - Stochastic Pattern Generator (Tsyrulnikov and Gayfulin 2017)
- It accounts for 'proportionality of scales'
- It can be extended to 3D (currently it is 2D in HarmonEPS)
- It does not have the problems of the default pattern generator - you can control the spatial scales!

In the following we use SPG for both SPPT and SPP

Experimental setup

- A clean setup to test the effect of the model perturbations
 - only model is perturbed (by SPPT or SPP).
 - LBCs, analysis, surface are the same for all members
- Many experiments needed, so necessary to have as "slim" experimentation as possible
 - o 6 + 1 ensemble members
 - Initial tests for one week in May 2016: 2016053000-2016060500
 - o +36h
- For SPPT so far mainly tested effect of spatial scale of perturbations
- For SPP tested time scale and tuned each parameter

SPPT and spatial scale (temporal = 8h)

Tested: 100km, 200km, 400km, 600km, 800km, 1000km, 1200km, 1500km, 1800km

The effect of changing the spatial scale is small - for T2m we see a difference, and 100km, 600km and 1200km are better than the other scales tried

___ 100 km 600km

SPP - currently 12 parameters implemented

cy40h1.1.1 - HarmonEPS branch

7 for clouds and microphysic, 2 for radiation and 3 for turbulence

https://hirlam.org/trac/wiki/HarmonieSystemDocumentation/EPS/SPP

Perturbation	Description	Perturbs	Default mean value	Recommended range by physics experts
LPERT_PSIGQSAT	perturb saturation limit sensitivity	VSIGQSAT	changed from 0.02 to 0.03	0-0.06
LPERT_CLDDPTH	perturb threshold cloud thickness for stratocumulus/cumulus transition	RFRMIN(19)	2000	1000-4000
LPERT_CLDDPTHDP	perturb threshold cloud thickness used in shallow/deep convection decision	RFRMIN(20)	4000	1000-8000
LPERT_ICE_CLD_WGT	perturb cloud ice content impact on cloud thickness	RFRMIN(21)	1	0-2
LPERT_ICENU	perturb ice nuclei	RFRMIN(9)	1	0.1-10
LPERT_KGN_ACON	perturb Kogan autoconversion speed	RFRMIN(10)	10	2-50
LPERT_KGN_SBGR	perturb Kogan subgrid scale (cloud fraction) sensitivity	RFRMIN(11)	changed from 1 to 0.5	0.01-1 (bigger than 0 and less than 1)
LPERT_RADGR	perturb graupel impact on radiation	RADGR	changed from 0 to 0.5	0-1
LPERT_RADSN	perturb snow impact on radiation	RADSN	changed from 0 to 0.5	0-1
LPERT_RFAC_TWOC	perturb top entrainment	RFAC_TWO_COEF	2	0.5-3
LPERT_RZC_H	perturb stable conditions length scale	RZC_H	0.15	0.1-0.25
LPERT RZL INF	Asymptotic free atmospheric length scale	RZL INF	100-	30-300

SPP and temporal scale

Tested 1h, 6h, 12h, 24h, 36h, frozen in time All with spatial scale of 200km 9 parameters in this test Effect of temporal scale is small. We use 12h in further tests

SPP - sensitivity to parameter pdf's

Example:

VSIGQSAT

Default, deterministic value is 0.03

Advice: interval of perturbation 0 - 0.06

Adjust the pdf in accordance with this - as a starting point

Test sensitivity to width of distribution, by doubling or quadrupling it

Check the impact on the scores

Done separately for all parameters

Example: Impact of width of pdf for one parameter (VSIGQSAT) Spread and skill

For some parameters we apply clipping not to exceed physically meaningful limits:

Comparing SPPT and SPP with 10 parameters

Comparing SPPT and SPP with 10 parameters

Spread & Skill(RMSE): T850

Verification Period: 2016053000-2016060500 ALL Stations

T850

1.00-

12

15

18

Lead Time (hours)

21

24

27

30

33

36

Looking closer at the differences between SPPT and SPP - using tendency output

T tendencies for control run (SPP = SPPT)

Looking closer at the differences between SPPT and SPP - using tendency output

T tendencies SPPT: SDEV

Looking closer at the differences between SPPT and SPP - using tendency output

T tendencies SPP: SDEV

Difference in SDEV of T tendencies between SPP and SPPT

Testing SPP in full HarmonEPS setup

- 6 + 1 members
- Period extended to 15 days: 2016053000-2016061300
- Forecast length extended to +48h
- MetCoOp area
- Comparing two experiments:
 - REF standard HarmonEPS setup with initial, surface and boundary perturbations
 - SPP as REF but with SPP parameter perturbations added

Spread and skill - surface

REF With SPP

Increased spread with SPP and about the same RMSE

Spread and skill - upper air

REF With SPP

Increased spread with SPP and about the same RMSE, except for total cloud cover where also RMSE is considerably reduced

Reliability

Reliability: T2m

Threshold: 10 degC Lead Time: 24 hours

Reliability: S10m

Threshold: 5 ms(-1) Lead Time: 24 hours Verification Period: 2016053000-2016061300

CRPS

We get encouraging results from including SPP in HarmonEPS!

Further work on SPPT and SPP

SPPT:

- SPPT perturbation amplitude tuning
- Better adjusting the PBL and upper atmosphere SPPT tapering
- Perturb independently each parameterisation
- Perturb independently each variable?

SPP:

- Test on a winter period
- Include and test more parameters
- Perturb SLHD
- Using different spatial and temporal scales for different parameters

For both:

- Optimize time-spatial scales in SPG
- extend SPG to 3D
- Combine SPP and SPPT

Thank you for your attention!