

Experiences with AROME in Austria

Clemens Wastl, ZAMG

with contributions from Florian Meier, Theresa Schellander-Gorgas, Christoph Wittmann

Content

- Model chain at ZAMG
- AROME history at ZAMG
- AROME operational setup
- Case studies:
 - Flood 2013 in Austria
 - **Thunderstorm**
 - Low stratus
- Problem with binary clouds changes in cloud diagnostics
- SAL Cloud verification
- Outlook

Model chain at ZAMG

ECMWF

16km, +240h, 2 runs

ECMWF EPS

30km, +240h, 2 runs 50+1 members

ALARO

4.8km, +72h, 4 runs

ALADIN LAEF

11km, +72h, 2 runs 16+1 members

AROME

AROME EPS

First tests with pure downscaling of LAEF

2.5km, +30h, 8 runs

AROME history at ZAMG

- Before 2011: first test runs with AROME on a small domain, no data assimilation, aggregation of know how
- ▶ **2011:** intensive work on implementation of AROME at ZAMG, enlargement of model domain (Alps), build up of AROME assimilation system, adaptations in model physics
- 2012: new HPC at ZAMG -> basis for operational use
- Summer 2013: extensive evaluation- and familiarization phase (ZAMG forecasters), continuous adaptations in model operations (assimilation, model physics)
- January 2014: Full operational use of AROME (= maximum fail safe, different backup scenarios)
- 2014: continuous improvement of the system (data assimilation, microphysics, increase of forecast range, domain, etc.)

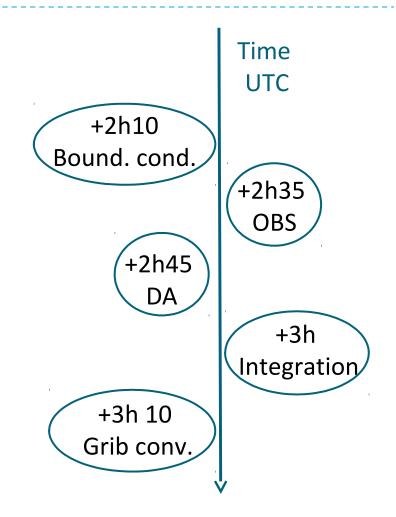
AROME – Operational Setup

Horizontal resolution	2.5km (432x320)

Vertical resolution 60 Levels

Runs / day 8 (00,03,..18,21 UTC)

Forecast Range 30h

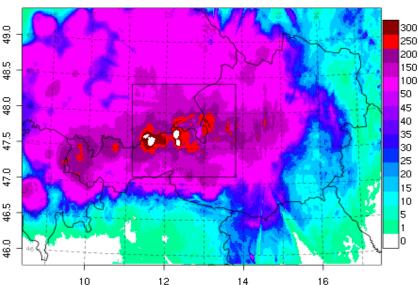

Output-Frequency 1/h

Model time step 60sec

Coupling model IFS (ECMWF)

Coupling update 3h or 1h

Assimilation 3DVAR / OI

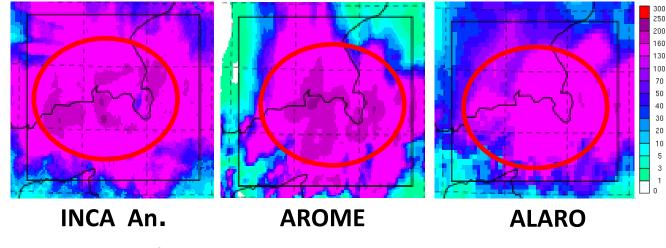


Case study: Flood 2013

- Large scale event in northern Alps in Austria and Bavaria; May 30th – June 2nd
- Maximum amounts > 300mm/72h
- Area wide devastation with extensive economic damage and even loss of human lives

Highest discharge at Danube in Vienna ever \$\mathscr{G}\$ (> 11.000m3/sec)

72h precip. INCA 2013060300


Case study: Flood 2013

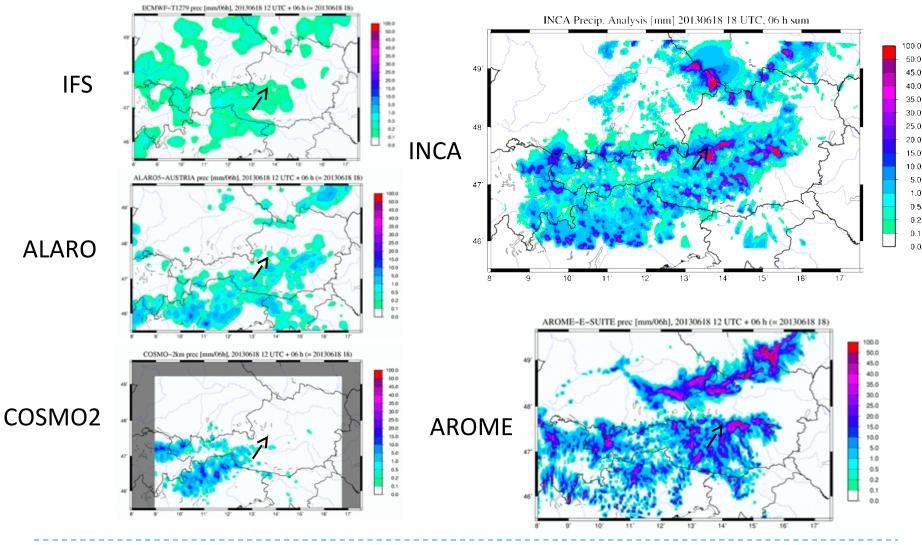
Model	24h precipitation : 31.5. 00UTC – 1.6. 00UTC	sums for different r 1.6. 00UTC – 2.6. 00UTC	
INCA analysis	33.7	44.5	68.6
AROME	30.5	42.1	63.9
ALARO	23.9	36.8	50.9
SAL (AROME)	0.02/-0.10/0.06	0.17/-0.06/0.01	-0.11/-0.07/0.02
SAL (ALARO)	0.24/-0.34/0.07	0.32/-0.19/0.01	0.25/-0.30/0.03

Much better forecast of precipitation in AROME for all 3 runs (area average); improved scores of structure, amplitude and location compared to ALARO

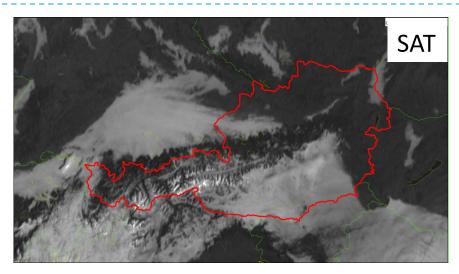
Higher peaks in AROME (> 150mm/24h)

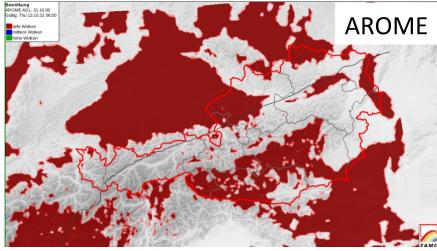
But! Too strong gradient at the edge of the precipitation field

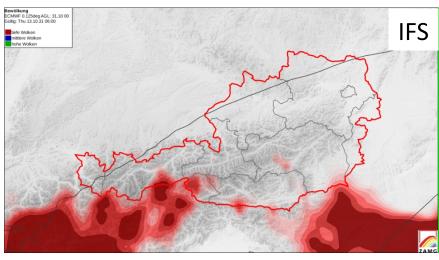
Forecast for 02.06.2013 00 UTC - 03.06.2013 00 UTC

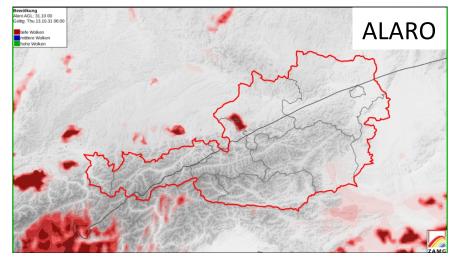


Case study: Thunderstorm - June 18th, 2013

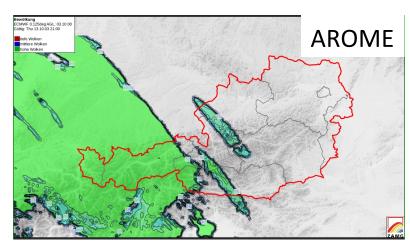


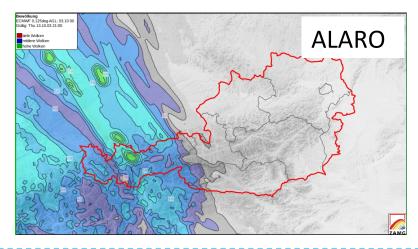






Case study: Low stratus – Oct. 31st, 2013


Cloud diagnostics problem


Too binary clouds, especially high clouds

Encodering 13 Joseph (AGL 03 100 Golder Test 13 Joseph (AGL 03 Joseph (AGL 03

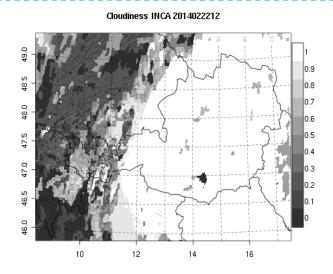
Oct. 3rd, 2013

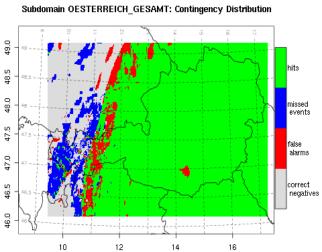
Improved cloud diagnostics

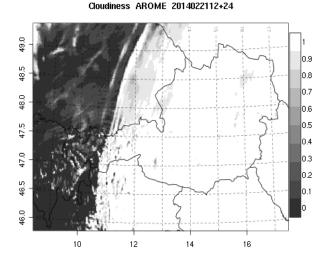
- not enough variance with original cloud scheme of AROME cycle 36
- cycle 37: Additional height dependent variance term proportional to gsat in routine condensation.f90:

```
PCLDFR=0.5+0.36*atan(1.55*ZQ1)
ZQ1=ZSBAR/ZSIGMA
ZSIGMA=sqrt((2*PSIGS)**2+(PSIGQSAT*ZQSL*ZA)**2)
```

- minimum of ZSIGMA is set to 10e-10 (10e-6 in cycle 36)
- we calculate ZSIGMA seperately for low, medium and high clouds with different PSIGQSAT values (0.020, 0.025, 0.030)
- -> seperate cloud fraction for low, medium and high clouds is passed to apl arome.F90
- reduction of high clouds by a simple algorithm
- only diagnostic, no influence on other parameters (T, prec, wind, etc.)







SAL cloud verification

- SAL precipitation verification of Wernli et al. (2008) was adapted to cloudiness
- Reference: INCA total cloudiness (combination of satellite information and ground solar measurements)
- 3 values: S (structure), A (amplitude) and L (location) for predifined domains
- Contingency tables with hit rate, false alarms, etc.

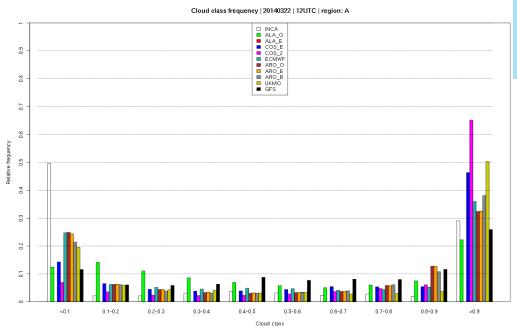
Structure: Amplitude: 0 Location: 0.07

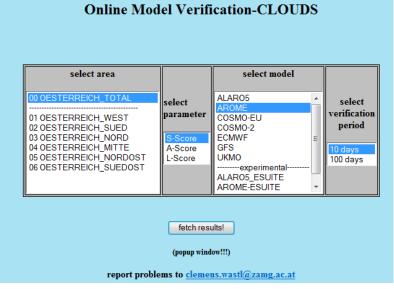
SAL:

Contingency Table %: 0.74 0.05 False Alarms: Missed:

0.06 Corr. Negatives: 0.16

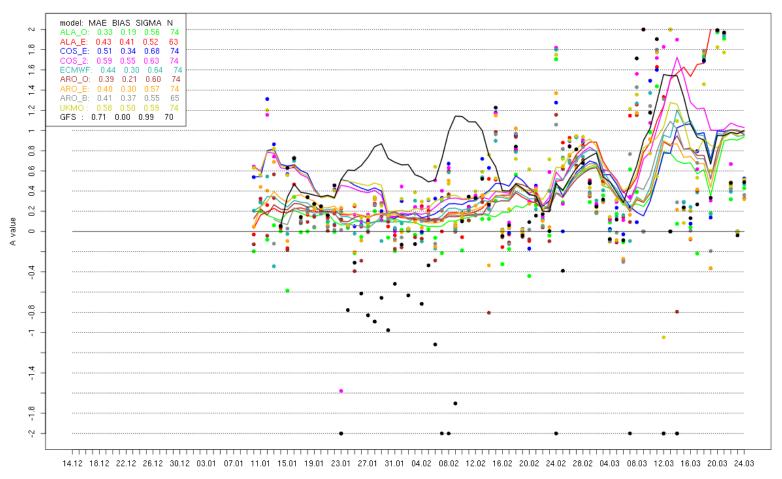
SP-class: 3 - Overcast





SAL cloud verification

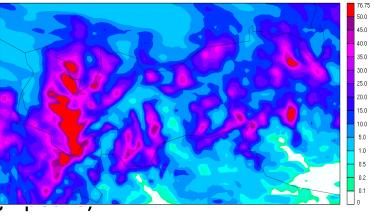
- Realtime tool
- Selection of model, score and time period
- -> SAL values
 - -> contingency tables

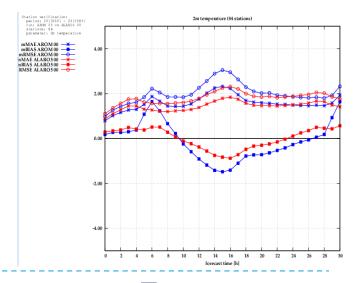


SAL cloud verification

SAL-values (points) + 7 days running mean MAE (lines) for all models for lead time -12h

Multi | 12UTC | -12h | 100 days | region: A | param: A | 2013-12-14 - 2014-03-24





Outlook

Most important topics to be handled in near future:

- Luv/Lee problem: Too strong precipitation gradients in the Alps (tests with modifications in microphysics)
- Triggering of convection (too early onset)
- Intensity of convective precipitation (too high
- Strong positive BIAS in small valleys at sunrise
 orographic radiation scheme in SURFEX
 collaboration with MF and FMI + LACE
- AROME EPS
- AROME 1km version

