Regional Cooperation for Limited Area Modeling in Central Europe

ALARO physics developments

Neva Pristov (LACE area leader for physics)

Jan Mašek, Ivan Baštak Duran, Jean-Francois Geleyn, Radmila Brožkova, Luc Gerard, Doina Banciu, Christoph Wittmann, Jure Cedilnik, Rafiq Hamdi, Rozemien De Troch

ALADIN /HIRLAM

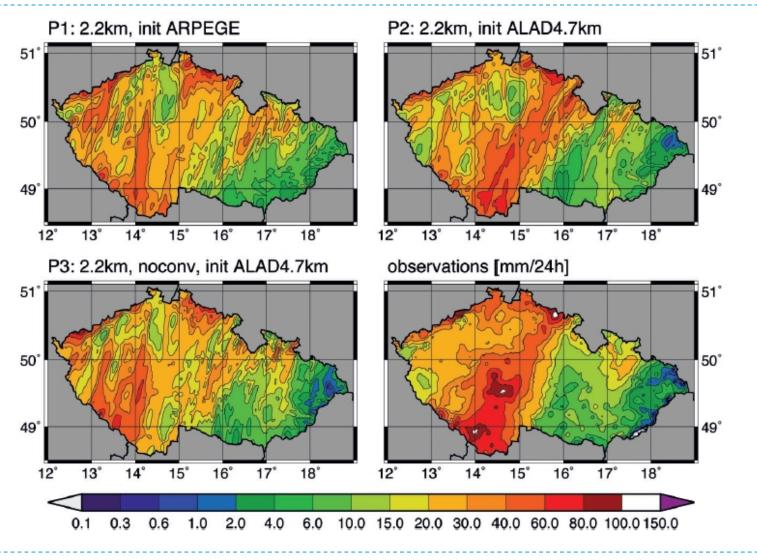
Talk outline

ALARO-0

- Status overview
- Confirmation of multi-scale behaviour
- SURFEX, lightning diagnostics
- ALARO-1 developments
 - Turbulence scheme
 - Radiation scheme
 - Convection
- Outlook

ALARO-0 status

- In the operational use in ALADIN countries
 - at, be, cz, hr, hu, pt, ro, sk, si, tr model resolution between 8 km – 4 km, 2km
- In EPS systems
 - ALADIN-LAEF, GLAMEPS, EPS at HMS
- In climatological simulations
- Plans for a usage in
 - HarmonEPS convection-permitting ensemble system
 - multi model systems


24h precipitation amount

🗖 ZAMG

Flood event

1 June 06 UTC - 2 June 06 UTC

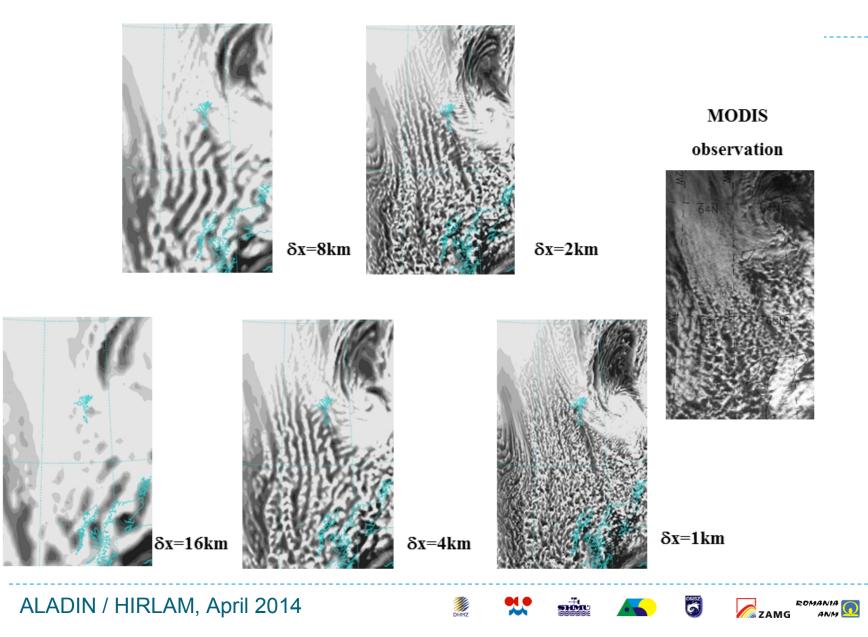
250

Flood event

1.0 Fraction skill score for the threshold 60 mm/ 0.8 24h een – 2.2 km with 3MT and starting from interpolated ALARO 4.7km 0.6 Green – 2.2 km with 3MT 0.4 Blue – 2.2 km without 3MT and starting from interpolated 0.2 ALARO 4.7km Yellow – 2.2 km dyn.adap. 0.0 -50 100 150 0 200 ARPEGE horizontal scale (side of smoothing box) [km] ALADIN4.7km (oper) ALADIN2.2km (P2) Red - operational ALARO ALADIN2.2km (P1) ALADIN2.2km (P3) 4.7km

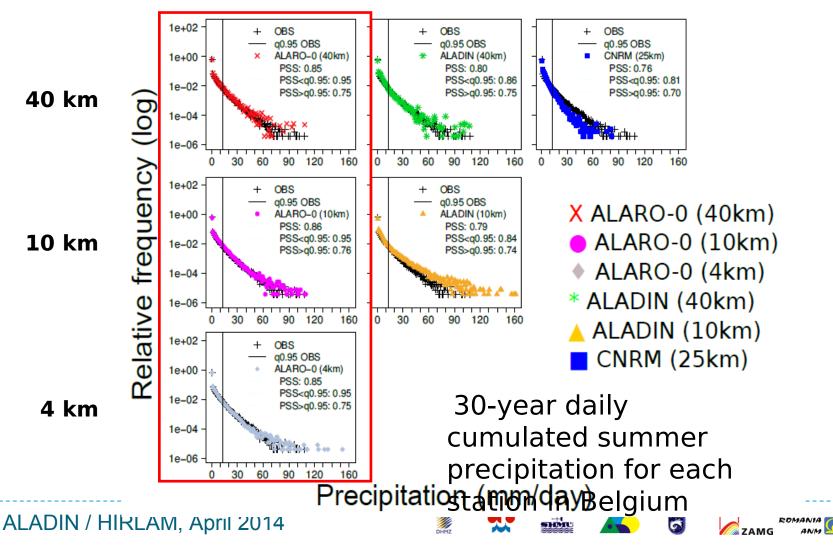
Flood event

- Plus
 - focus of the precipitation satisfactory simulated
 - significantly better performance than ECMWF (point and area precipitation)
 - area average for various catchments realistically simulated
 - added predictability for large-scale heavy precipitation event
- Minus
 - some local precipitation peaks are underestimated
 - best forecast on (31.05.2013), next days runs underestimated more



- Demonstration of multi-scale behaviour
 - grey-zone experiment defined by WGNE group (http://www.knmi.nl/samenw/greyzone/index.html) (Radmila's presentation)
 - regional climate simulations extreme precipitation events (Rozemien's poster)

WGNE grey-zone test, ALARO-0, cloud cover at 24h range



Improvement of ALARO-0

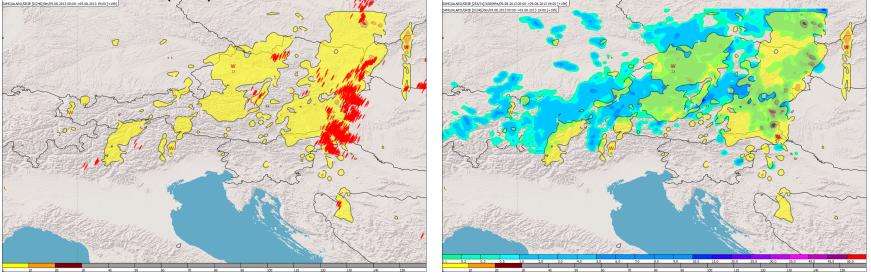
modeling of extreme precipitation events

Convection diagnostics

- mixed layer CAPE
- storm motion vector, vertical wind shear, relative helicity
- lightning diagnostics
 - 4 different methods in test
- diagnosed hail
 - vertical integral of graupel,
 - as an instantaneous flux maximum over a given period

Lightning diagnostics

- to estimate lightning densities 4 different methods are implemented :
 - based on Price and Rind 1992
 - f (vertical wind speed)
 - based on McCaul et al. 2009:
 - f (graupel flux in mixed phase layer region) or
 - f (integrated solid hydrometeors)
 - blended version of above two
- as an accumulated flux
- based on cy38t1



Lightning diagnostics

Forecasted lightning density (yellow – low intensity) and observed (red)

Forecasted lightning density (yellow, orange) and precipitation

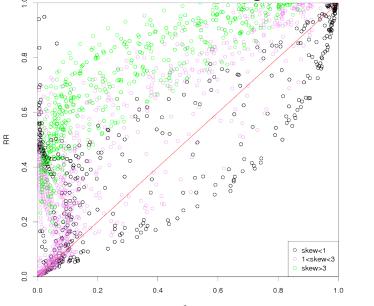
- Coupling SURFEX_V7.2 to ALARO within cycle CY38T1
 - implementation
 - tested in one case
- Coupling SURFEX and TOUCANS
 - via the neutral drag coefficient Cdn
 - modifications of routines
- (Rafiq's poster)

ALARO-1 developments (<10 km, down to 1 km)

- Turbulence scheme TOUCANS
- Radiation
- Convection
 - Unsaturated downdraft scheme
 - CSD (Complementary Subgrid Draft) deep convection parameterization with a set of high resolution-specific features

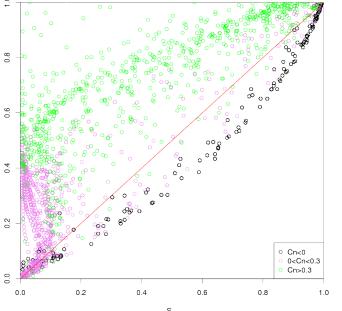
TOUCANS

- Coding, scientific evaluation and validation
 The new elements are:
 - emulation of the EFB and RMC01 scheme
 - prognostic TTE (following ZEKRE13)
 - a new more accurate fit of QNSE scheme
 - new revised parametrisation of TOMs (Non-local diffusion of heat and moisture separately).
 - prognostic mixing length (cleaning)
 - computation of SCC (shallow convection cloudiness) still to decide
 - currently based on JFG shallow convection parameterization
 - new non-linear dependence of buoyancy flux on SCC based on Marquet and Geleyn 2013 and Lewellen and Lewellen 2004 data



Q - specific horizontal part

0


M - transversal vertical aspect

Dependence of RR on SCC (in RR 2 effects are combined) skewness of the w subgrid fluctuations

Dependence of Q on SCC

Cn - skewness equivalent parameter

less dispersion and a more regular scaling for Q(SCC)

- Testing and code debugging, tuning various options
- Searching for an optimal set-up for operational use

ACRANEB2 baseline version is finalized

Developments in last months:

- statistical model
 - reformulated statistical model, giving more accurate EBL flux estimate when adjacent exchanges are excluded
 - however, introduction of clouds requires inclusion of adjacent exchanges in EBL flux and thus prevents use of new statistical model
 - workaround is to compute EBL flux by costly exact computation called intermittently
 - 3 hour update frequency of bracketing weights turned to be reasonable

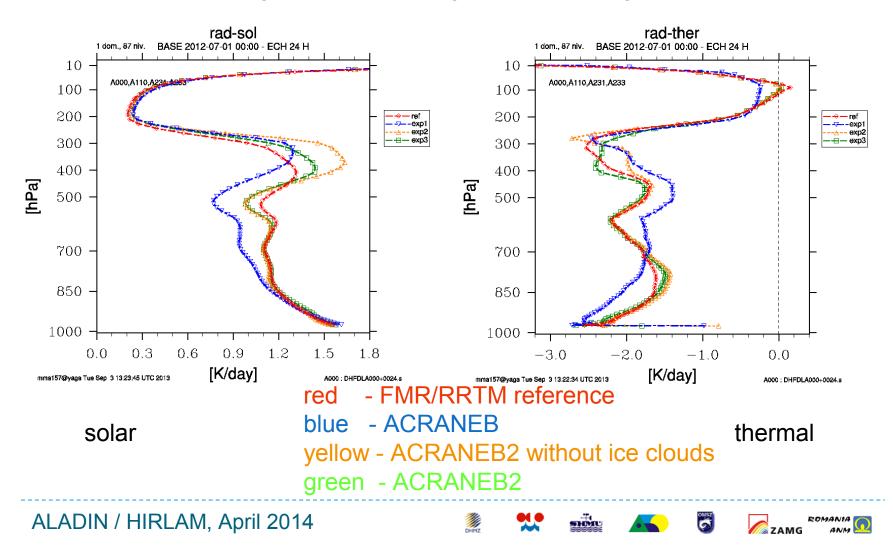
Radiation scheme

clouds

- cloud simulation model was updated and saturation of shortwave cloud absorption was unified with secondary gaseous saturation
- optical properties of ice clouds were refitted against more modern reference; compromise between cost and accuracy

Radiation scheme

Rayleigh scattering


- saturation of Rayleigh scattering was parameterized
- it relies on dominant role of primary scattering
- surface albedo
 - dependency of direct surface albedo on sun elevation was revised in ISBA case
 - Geleyn's formula was generalized by adding proportion of Lambertian reflection
 - setting this proportion to 0.6 greatly improves direct albedo of land and snow

Radiation scheme

24 hour DDH heating rates for full integrations including aerosols and clouds

ACRANEB2

- extensive testing is 3D ongoing (cy38t1)
 - it is premature to draw the conclusions
 - it is necessary to get rid of biases which are probably arising from broken error compensations
- extra cost in ALADIN/CHMI oper configuration is about 8% with respect to ALARO integration using old ACRANEB scheme
- phased into cy40t1; available under both APLPAR and APL_AROME via new INTFLEX phys-dyn interface

ACRANEB2 baseline namelist settings

- &NAMPHY NRAY=2,
 - NTHRAYFR=-1,
 - NRAUTOEV=3,
 - LRPROX=.F.,

- activation of ACRANEB2
- 1 hour intermittency for LW gaseous transmissions
- 3 times longer update interval for statistical weights (3 hours in this case)
- include adjacent exchanges in EBL computation
- , &NAMPHY3 RLAMB_SOLID=0.6,
- proportion of Lambertian reflection for solid surfaces

Convection

- Non-saturated downdraught
 - with or without the complementary sub-grid option
 - the necessity of a re-tuning of the updraught or of microphysics
 - modifications of the equivalent cloudiness (removing an earlier inconsistency)

(Pieter De Meutter's presentation)

- Complementary Subgrid Upraft
 - some novelties included
 - tests show a satisfactory extinction when increasing resolution, together with a gradual increase of the maximum 'real updraft' mesh fraction towards 1

Plans

- Assembling strategy in 2 steps
 - Step 1:
 - TOUCANS, Unsaturated downdraft and radiation (ACRANEB2)
 - Step 2:
 - complementary sub-grid drafts (CSD),
 - TOUCANS evolution,
 - prognostic graupel,
 - thermodynamic adjustment,
 - unified cloud treatment in radiation, shallow convection, thermodynamic adjustment and 3MT,
 - Cellular Automaton some adaptations needed

Plans

- Physics-dynamics interface
- Orographic effect parametrization for radiation
- Validation
 - investment in testbeds and facilities
 - validation of developments
 - tests at higher resolution (scales around 2 km meshsize)

Revision, update of plans in one month at

ALARO-1 Working days Vienna, 12-14 May 2014

www.rclace.eu/?page=148

