Regional Cooperation for Limited Area Modeling in Central Europe

ALARO-1 an overview

Neva Pristov

- Main developments
 - Turbulence scheme TOUCANS

Ivan Bastak Duran, Filip Vana, Jean-Francois Geleyn

Radiation

Jan Masek, Radmila Brozkova

- Convection

Luc Gerard, Doina Banciu

- News
 - ALARO-1 Working Days
 - ALARO-0 baseline version

• Plans

TOUCANS

Main features:

- prognostic TKE system: advection, diffusion, buoyancy/shear production and dissipation
- emulation of different TKE schemes: QNSE, CCH02, EFB (quasicoded), ..(via various stability functions)
- TKE and 'moist stability' dependent mixing lengths
- Shallow Convection Parametrisation (SCP) through modification of Richardson number (Ri)
- influence of moisture and phase changes on intensity of turbulence
- liquid water and ice $(q_{l/i})$ vertical turb.diffusion
- Third Order Moments parametrisation (following Canuto et al. (2007)) for heat and moisture

TOUCANS

cloudiness

Ongoing:

- Testing and code debugging, tuning various options
- Searching for an optimal set-up for operational use
- Preparations for treatment of
 - prognostic turbulent total energy (TTE)
 - prognostic handling of mixing length
 - shallow convection cloudiness (SCC) using Tompkins approach with prognostic skewness and saturation deficit

ACRANEB2

- Gaseous transmissions fitted against SPLIDACO reference (H2O e-type continuum taken from MT_CKD model)
- Transmission part completely rewritten
- NER part unchanged thanks to suitably redefined inputs
- Intermittency introduced for transmissions in thermal, interactions with cloudiness are computed at every timestep
- Changes in statistical model are still expected

Problems solved in last months:

- Consistent spectral averaging in NER: double temperature dependency of broadband thermal transmissions (fundamental)
- Accuracy of individual gaseous fits
- Parametrization of non-random gaseous overlaps
 H2O e-type continuum is included into H2O transmission
- Broadband Voigt treatment (dominant above 70km)

Error introduced assuming $T_e = T$

mid-latitude summer case, H_2O only (excluding e-type continuum)

illustration of the problem

Comparison with old ACRANEB – thermal band

mid-latitude summer, all gases present

sufficient accuracy in clearsky case:

heating rates are within $\sim 0.1 \,\text{K/day}$ from SPLIDACO narrowband reference

Comparison with old ACRANEB – solar band

mid-latitude summer, all gases present

ACRANEB2 remaining issues:

- Put ACRANEB2 code into 3D model, perform basic validation, evaluate and possibly optimize CPU cost
- Retuning of statistical model, incorporating dependency on vertical resolution
- Validation in 3D model, comparison with RRTM, testing thermal intermittency
- Baseline version should be delivered in June

CSD (complementary subgrid draft)

Deep convection parametrisation with a set of high resolution-specific features:

all the 3MT features plus (mainly)

- Perturbation approach to compute subgrid contibution to updraft
- Specific mixed closure (CAPE+MoCon), allowing mesh fractions up to 1
- Specific triggering (for complementary behaviour across resolutions)
- Gradually rising cloud top (cloud evolution over several time-steps)
- Perturbation approach also applied in unsaturated downdraft parametrization.

BB case, total precipitation at 8 km, 4 km, 2 km, 1km

BB case, sub-grid precipitation at 8, 4, 2, 1km

t2C3u4

0.15

16.7,

8km, 4km, 2km,1km, total (solid) vs subgrid (dash)

The extinction of the subgrid part is well apparent for the CSD

ALARO-1 developments code status

- TOUCANS implemented into main ALADIN library cy36, cy38, cy39
- ACRANEB2 external tool
- CSD implemented into local cy36 version (Brussels, Prague)

ALARO-1 Working Days, Ljubljana, 13-15 June 2012

- www.rclace.eu/?page=136
- participants, 13 countries, ALADIN, LACE, HIRLAM
- status overview, plan

A baseline of the ALARO-0 version is available

- all recent improvements are included
- a reference
- base for new developments implementation
- recommended for the operational use at > 4 km resolution
- can be used also at 2 km resolution

A baseline of the ALARO-0 version improvements mostly in moist part

- Sedimentation of cloud water and ice
- Protection of convective condensation below diagnosed LCL
- Corrections in downdraft and updraft computations
- Retuning in cloudiness, convection and sedimentation computations
- Mixed type of closure instead of pure moisture convergence one in 3MT
- Adaptive detrainment is made dependent on total evaporation (precipitation) at previous time-step
- Entrainment rate is made dependent on rel. humidity of environment at previous time-step

ALARO-1 (< 10 km, down to 1 km) assembling strategy in 2 steps:

- step 1: radiation, TOUCANS, unsaturated downdraft
- step 2: CSD, TOUCANS evolution, prognostic graupel, thermodynamic adjustment, unified cloud treatment in radiation, shallow convection, thermodynamic adjustment and 3MT

- validation
 - investment in testbeds and facilities
 - validation of developments (2 steps)
 - tests at higher resolution (scales around 2 km mesh-size)
- development
 - cloud scheme, 3D extension of turbulence, microphysics
 - stochastic physics (CA) and Rash Kristjansen condensation scheme with 3MT and TOUCANS
 - an interface with SURFEX: coupling of SURFEX with TOU-CANS
- regarding code design
 - tests of physics-dynamics interface
 - revisit of APLPAR aimed at big blocks such as radiation, turbulence, microphysics.

