Nowcasting with AROME - recent challenges and developments in Austria

Florian Meier, Yong Wang with contributions from Aitor Atencia, Phillip Scheffknecht, Christoph Wittmann and Mirela Pietrisi

Outlook

- Why we do it?
- Technical setup
- Results and issues: Cycling, Spin-Up, Doppler winds
- Conclusions and further plans

Classical Nowcasting (at ZAMG INCA)

- fast (within few minutes)
- high resolution (<=1km)
- frequent: every 15/5min
- simple combination of observations +NWP
- simple dynamics (motion vectors)
- struggles to predict rapidly envolving non-linear events

Classical Nowcasting (at ZAMG INCA)

- fast (within few minutes)
- high resolution (<=1km)
- frequent: every 15/5min
- simple combination of observations +NWP
- simple dynamics (motion vectors)
- struggles to predict rapidly envolving non-linear events

LAM-NWP (at ZAMG AROME 2.5km)

- Slower: available within several hours
- coarser resolved
- less frequent (3 hourly)
- 3D-VAR + OI soil
- Full 3D-dynamics/complex physics
- Long lead time beyond nowcasting range (+60h)

AROME-RUC Nowcasting:

- fill gap inbetween
- every hour, within one hour, hourly (2hourly) cycle, up to +12h
- higher resolution close to INCA (1.2km)
- Computational costly and challanging
- reduced available observation set might cause problems
- similar systems in France (AROME-PI), Norway, Denmark, ...
- Operational at ZAMG by the end of 2019

Technical setup of AROME-RUC for Nowcasting at ZAMG

and the second

- coupled to most recent AROME 2.5km
- different cycling (1-2h), higher res. (1.2km) and smaller domain than in AROME 2.5km
- feedback from classical Nowcasting via Latent Heat Nudging +35min every 5min
- FDDA-Nudging of T2m/RH2m/10m wind +30min every 10min
- additional observations: RADAR, MODE-S, AMDAR-Q, national GNSS-ZTD
- backphased IAU filtering to control spin-up +5min
- cutoff time +30min; lead time +12h
- Saturated radar RH obs if threshold of reflectivity exceeded (idea of E. Wattrelot)

INCA- classical nowcasting AROME-OPER 2.5kmL90

Radar assimilation struggles if no rain in the surrounding, but rain observed

Latent heat nudging can support formation of convection in the model

Spin-up and cycling startegy

ECHKEVO spin-up diagnostics

- Spin-up >1h
- 2 hourly slightly better than 1 hourly
- Nudging/LHN has no significant impact here
- IAU filtering works
- "Open loop" is especially problematic 2.5km ->1.2km

Reasons:

B-Matrix not well defined? Complex orography and domain not optimal?

Hourly or 2 hourly cycling?

standard hourly cycling performed extremly bad compared to two hourly (Bias+RMSE) Idea:

Start one hour in advance and push forecast towards analysis to reduce spin-up time avoid competition of IAU and Nudging

Validation of precipitation summer

Fraction Skill Score FSS July 2016

INIT TIMES (24 runs)

difference in FSS to freshest AROME 2.5km

Fraction Skill Score FSS January 2017difference in FSS to freshest AROME 2.5km

-ead time

Validation July 2016, January 2017 wind

AROME 2.5km soild; AROME-RUC dashed

Validation of Latent Heat Nudging 1st-16th July 2016

- slight improvement up to +2h
- expectation from literature about +6h
- poor statistics (16 days) and small domain
- further tuning necessary

$$\begin{split} &\sum \frac{FSS_{exp} - FSS_{ref}}{1 - Fss_{ref}} & if \; Fss_{exp} > Fss_{ref} \\ &+ \sum \frac{FSS_{exp} - FSS_{ref}}{1 - Fss_{exp}} & \text{else} \end{split}$$

Absolute Degree of Freedom for Signal (DFS)

Radar DOW assimilation still problematic

FSS AROME-RUC+VARQC

FSS AROME-RUC+VARQC-noVARQC

1st-16th July 2016

- even the not tuned VARQC can improve the precip.
 forecast
- difficult to switch on VARQC for only one obstype

VARQC of radar? (gross errors get reduced weight)

Ingleby &Lorenc 1993

Austrian radars only

reflectivity ->pseudo RH obs no simple gaussian error

Conclusions and plans

- AROME-based Nowcasting is feasible
- Improvement in 10m wind (and gusts) (BIAS+MAE) and summer precipitation (FSS until +6h)
- Latent heat nudging improves mostly up to +2h, in single case more
- for us: hourly cycling only possible with long IAU filtering (complex terrain+B-Matrix?)
- Doppler wind has to much impact (aliasing remnants) -> VARQC might help
- Radar assimilation struggles, if no fitting feature is included in the first guess in the surrounding of an observation -> saturation of profile can help, but is dangerous if OBS has error, LHN can also help
 - Put AROME-RUC to operations within this year
 - Consider post-processing and visualisation
 - B-Matrix is currently updated with EDA approach coupled to C-LAEF ->tests
 - Quality control, especially for Doppler wind has to be re-considered
 - Inclusion of further observations:
 wind profiler, cloud assimilation, private weather stations, HRV AMVs

MAE (area mean)

total_precipitation_area: Mean MAE from: 20160701 to 20160731

AROME-OPER: thick lines AROME-RUC: dashed lines

BIAS (area mean)

total_precipitation_area: Mean BIAS from: 20160701 to 20160731

AROME-OPER: thick lines AROME-RUC: dashed lines

ICE-CONTROL 25.04.2013 Folie 27

FDDA nudging in AROME (TAWES observations; Liu et al. 2006)

$$DISTANCE' = DISTANCE + R \frac{|z_{OBS} - z_{GP}|}{dzthres = 300m}$$

$$w_{xy} = \frac{R^2 0.75^2 - DISTANCE'^2}{R^2 0.75^2 + DISTANCE'^2} \left(\frac{ps_{GP}}{500hPa} + 1\right)$$

$$\frac{\partial x}{\partial t} = \frac{\partial x}{\partial t_{phys}} + G \frac{\sum_{i} w_{xyi}^{2} (y_{iobs} - x_{model})}{\sum_{i} w_{xyi}}$$

$$\frac{\partial x}{\partial t} = \frac{\partial x}{\partial t_{phys}} + G \frac{\sum_{i} w_{xyi}^{2} y_{iobs}}{\sum_{i} w_{xyi}} - G \frac{\sum_{i} w_{xyi}^{2} x_{model}}{\sum_{i} w_{xyi}}$$

R=20km G_c =0.00433 τ =6 (namelist switches)

 $G = G_c * w_{\tau}$ $W_{\tau} \quad \text{OBSTIME}$ $0 \quad -\tau / 2 \quad \tau / 2 \quad +\tau$

Observations at: +10 / 20 / 30min

x=T2m/RH2m/U10m

called from apl_arome.F90 after microphysics

Crashes without abort in minimization - NaN cost function

- AROME
- •GOM arrays NaN (simulated synop observations) due to negative exchange o2.04.2019 coefficients PCH/PCD(5) in achmttl.F90/acntclstl.F90
- Most crashes avoidable, if synop stations Leiser Berge, Ptuj and Kostelní
 Myslová blacklisted
- •MF-Solution (P. Brousseau) NFPCLI =3 in 927 for old ISBA fields else NFPCLI =1
- •old ISBA surface fields (ADDSURF) are still used (roughness, vegetation, emissivity?)!

•Idea: exchange fields with SURFEX values sypallers bes avoided so far

Classical Nowcasting (at ZAMG INCA)

- fast (within few minutes)
- high resolution (<=1km)
- frequent: every 15/5min
- simple combination of observations +NWP
- simple dynamics (motion vectors)
- struggles to predict rapidly envolving

non-linear events

LAM-NWP (at ZAMG AROME 2.5km)

- Slower: available within several hour
- coarser resolved
- less frequent (3 hourly)
- 3D-VAR + OI soil
- Full 3D-dynamics/complex physics
- Long lead time beyond nowcasting range (+60h)

