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Talk’s overview

 The ARPEGE/IFS/AROME/HARMONY…  world

 Current operational situation (ARPEGE and AROME)

 EDMF concept

 Evolution strategy (seamless approach, convergence with 
AROME)

 Stability problem and implicit solution

 References
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ARPEGE/ALADIN/AROME/IFS/HARMONIE
A unified sofware

GLOBAL (variable mesh or not) or LAM (choice made by NAMELIST)

Hydrostatic Non hydrostatic
3D/4D

Variational
Algorithmic
structure

Obs
operators

Hirlam
ALARO

3MT concept
~4km

ARPEGE
ALADIN-MF
200km8km

AROME
MESO-NH

2.5km

IFS
~15km

A set of physical packages (choice made by NAMELIST)

OI assimilation scheme
Used only for surface

Two dynamical cores (choice made by namelist)
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ARPEGE/ALADIN-MF operational configurations

 ARPEGE is a global spectral model with a variable mesh

 T798 C=2.4 (∆t = 514s)  10 km over France and around 60 km at 
the antipode, few hundred kilometers east New-Zealand

 70 vertical levels  Close to ECMWF vertical resolution in the 
troposphere

 4DVAR multi-incremental data assimilation, with two outer loops 
T107 C=1 (∆t = 1800s) and T323 C=1 (∆t = 1350s) using a 6 hours 
window

 ALADIN-MF is an hydrostatic LAM with the same physics it runs 
over Indien Ocean, West Indies, French Polynesia, New-Caledonia 
and some secret parts of the world (army queries !)

 3DVAR data assimilation

 Presently 8km, 70 levels, ∆t = 480s
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AROME operational configuration

 AROME is a non-hydrostatic LAM

 Physical parametrizations come from Méso-Nh 

It runs over France (coupling model is ARPEGE)

 3DVAR data assimilation

 Presently 2.5km, 60 levels (more levels than ARPEGE in the PBL)

 ∆t = 60s
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Operationnal «NWP» Boundary layer physics at Météo-France

All NWP models (AROME, ARPEGE and ALADIN-MF) use « EDMF » concept 
(Hourdin et al 2002, Soares et al 2004, Siebesma et al 2007) 

ARPEGE and ALADIN-MF AROME

 Prognostic turbulent kinetic 
energy scheme « CBR » 
(Cuxart et al 2000)

 Shallow convection mass 
flux scheme « KFB » (Bechtold 
et al 2001)

 Prognostic turbulent kinetic 
energy scheme « CBR » 
(Cuxart et al 2000)

 Shallow convection and dry 
thermal mass flux scheme 
« EDKF » (Pergaud et al 2009)

Equations 
should be 
the same
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Connection between TKE and Shallow convection

 With KFB, during our first evaluation tests in ARPEGE, we found too 
much low level clouds and too much wind in the PBL in the tropical area 

 A thermal production term is then computed by KFB and Bougeault 
Lacarrère (1989) mixing lengths are increased in the shallow clouds
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It was found a large beneficial impact on wind in the 
tropics (20S  20N)

Zonal mean over the tropical area 
of the Kinetic energy (J/kg) 
with (red) and without (black)
the thermal production term
coming from shallow convection 
and the modification of the mixing 
length inside the cloud. 
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9

The reasons of a test of EDKF in ARPEGE

 No dry thermal in KFB

 No mixing of wind in KFB

 Convergence strategy between NWP models physics  (seamless approach)

 Global model is a great testbed for parametrizations

 But, global models are very sensitive clockworks

 KFB is numerically stable at large time step  T107 ∆t = 1800s 

 With EDKF we uncountered numerical stability problems

 The solution was a common implicit solver for Eddy-Difusivity and Mass 
Flux part
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Implicit treatment of the Mass Flux equation (1)
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Implicit treatment of the Mass Flux equation (2)

We obtain  :
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Implicit treatment of the Eddy-Difusivity equation

Eddy Difusivity equation,  
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Common implicite resolution of the EDMF equation

Discretization of the full EDMF equation :   
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Test in 1D model using the Arm Cumulus case (1)

Cloud liquid water AROME 60s Cloud liquid water ARPEGE 60s
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Test in 1D model using the Arm Cumulus case (2)

150s

ARPEGE common implicit solutionARPEGE split implicit treatment

300s
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