Working group 3 : Physics

Participants :

Doina Banciu, Eric Bazile, Mihaela Caian, Luc Gérard, Dominique Giard, Marek Jerczynski, Gergana Kozinarova, Maria Rousseva

Report :

The main topics addressed in second medium-term research plan for ALADIN (1999-2001) were successively discussed. The ALATNET research plan (2000-2003) was checked afterwards.

Topic	Achievements	Program of work
Land surface medium ↓ low	 New global dataset for soil tested (5') New global dataset for vegetation (5') soon ready, draft version tested New climatological surface fields (1°) created and tested New fields available in 923, more tests of consistency Importance of an improved description of urban areas shown Improvements in the initialization by 927 	 Update of 923 ⇒ who : Dominique Giard ⇒ when : summer 2001 Introduction of a new surface type and improved characteristics for towns in 923 and physics ⇒ who : Mihaela Caian with help from Dominique Giard ⇒ when : summer 2001 Computation and control of the updated vegetation datasets ⇒ who : Marek Jerczynski, Gergana Kozinarova and Maria Rousseva ⇒ when : june 2001 Validation of the new clim files in assimilation mode, operational change ⇒ who : Toulouse team + Olivier Latinne ⇒ when : before end 2001 Improved surface parameterization, and associated changes in assimilation ⇒ who : waiting for volunteers ⇒ when : idem Creation of a higher resolution dataset for vegetation over Europe and Northern Africa (2'30 or less) ⇒ who : waiting for a volunteer (feasibility study by Marek Jerczynski) ⇒ when : before going to higher model resolutions (e.g. ≤ 6 km)

Snow cover priority : high ↓ high	 Improved snow cover analysis available Improved description of the snow coverage and the albedo, taking into account vegetation, now available and tested in forecast mode 	 Test of the snow analysis in assimilation mode ⇒ who : Lora Gaytandjieva with help from Françoise Taillefer ⇒ when : summer 2001 Test of the new scheme, with the snow cover analysis, in assimilation mode ⇒ who : Eric Bazile ⇒ who : Eric Bazile ⇒ when : autumn 2001 Introduction of both modifications in operations ⇒ who : Eric Bazile and Françoise Taillefer ⇒ when : before end 2001 Coding the interface with the Fernandez' snow scheme (in cooperation with HIRLAM), improved description of snow age and of the impact of precipitations ⇒ who : Eric Bazile, Jadwiga Woyciechowska and ? (maybe the Bulgarian team will feel interested) ⇒ when : before end 2003, starting in autumn 2001 for the first point Improvement / update of the snow cover analysis (new observations, new variables) ⇒ who : Françoise Taillefer, Philippe Caille and ? ⇒ when : may start in September 2001
Water surface priority : medium ↓ medium	 Available tools to improve the initialization of the temperature of lakes (923, 927) Tests of some parameterizations of the evolution of the temperature of lakes : using a simplified model embedded in ISBA or coupling with the Hostetler lake model Importance of a regular update of SST fields demonstrated ("Lézignan floods" case) New formulation of the evaporation over sea, taking into account the impact of convective precipitations, coded and tested (together with retunings of the current formulation of the roughness length) 	 Improving climatological values for the temperature of lakes (collecting data) ⇒ who : all partners concerned; maybe the Hungarian team feels more interested ⇒ when : depending of individual interest Coding an alternative initialization of the temperature of lakes and islands in 927, and comparing both schemes ⇒ who : Ryad El Khatib for the coding, idem as for the first item for the test ⇒ when : idem Implementation of the parameterizations of lakes in the next libraries ⇒ who : Mihaela Caian with help from Eric Bazile ⇒ when : before end 2001 ? Testing the "Lézignan floods" case with an evolution of SST along the forecast controlled by the Hotstetler laketype model ⇒ who : Mihaela Caian with help from Eric Bazile ⇒ who : Mihaela Caian with help from Eric Bazile ⇒ who : Eric Bazile ⇒ when : before end 2001 ? Introducing the new formulation of evaporation over sea in operations ⇒ who : Eric Bazile ⇒ when : before end 2001 (CYCORA-3) ? Improving SST analysis (new observations), for assimilation ⇒ who : Françoise Taillefer, Philippe Caille with help from Portugal or Morocco ⇒ when : starting end 2001 ?

		T. 1
Orography priority : high ↓ high	 New global dataset (2'30) tested Available tool to use local, higher resolution, data New formulation of the cost function taking into account the fraction of water, and improving the representation of coasts Importance of a local tuning of orography demonstrated New formulation of the enveloppe available "Lift" parameterization analyzed for small scales and shown as not suitable Evidence of remaining problems (case studies, assimilation,) 	 Introduction in operations of the new dataset ⇒ who : Dominique Giard, with help from Patrick Saez ? ⇒ when : before end 2001 Local retuning of orography ⇒ who : each team ⇒ when : before the operational change of clim files Study of the description and impact of the orographic roughness length ⇒ who : Philippe Nomérange ?, Richard Mladek, and ? ⇒ who : Philippe Nomérange ?, Richard Mladek, and ? ⇒ when : before end 2003 ? Exploring other issues ⇒ who : Philippe Nomérange ?, Richard Mladek, and ? ⇒ who : Philippe Nomérange ?, Richard Mladek, and ? ⇒ who : Philippe Nomérange ?, Richard Mladek, and ? ⇒ who : R. Mladek + P. Nomérange ? + J.F. Geleyn + ? (+ D. Giard for 923?) ⇒ when : before end 2001
Radiation priority : high ↓ high	 Introduction of improved optical properties of clouds in operations More precise description of optical depth, with a positive impact but an unstable behaviour 	 Some alternative retunings ⇒ who : ? with help from Jean-François Geleyn ⇒ when : before end 2001 (CYCORA-3) ? Deeper modifications to be discussed after the training course (end 09/2001)
Convection Updraughts and downdraughts priority : high / medium ↓ high / medium	 Two PhD theses completed New prognostic cloud scheme designed and tested Parameterization of updraughts and downdraughts in operations Some more refinements put in operations 	 Checking the interface with dynamics for the new variables ⇒ who : Luc Gérard and Ilian Gospodinov ⇒ when : summer 2001 Some more tunings and case studies, impact of resolution and background ⇒ who : Luc Gérard, Doina Banciu, Eric Bazile, Jean-Marcel Piriou, Karim Bergaoui ("warm surfaces"), Austrian team ("orography") ⇒ when : end 2002 ? Interaction with other developments (e.g. ql, qi) and new refinements ⇒ who : previous team + ? ⇒ when : ?
Prognostic cloud water content priority : medium ↓ medium	• "Functional Boxes" approach coded and tested for some parameterizations	 Definite tests for Functional Boxes → keep or forget ⇒ who : Eric Bazile ⇒ when : before end 2001 Definition of new objectives Introduction of precipitating water ? Cooperation with other groups (GMME, HIRLAM) Interaction with the description of visibility Interaction with the PhD thesis of Margarida Belo Pereira on the assimilation of water

Vertical diffusion PBL Low-level cloudiness priority : medium ↓ high	 Positive impact of CYCORA-1+2 even if CYCORA-1, designed as a temporary measure of emergency, lead to some problems Problem of mixing length well identified but no solution found so far New formulations of the dry turbulent fluxes have improved the prediction of cyclogenesis events Diagnostic studies from operations or EUROCS data, explaining why low-level cloudiness is under- estimated; new approach coded and tested, improving EUROCS case; cloud resolving models data now available to study clouds capped by inversion. 	 PhD thesis : Study of the realtionship between turbulent fluxes in deeply stable PBL situations and cyclogenetic activity ⇒ who : André Simon, with help from Jean-François Geleyn ⇒ when : early 2002- end 2004 ? Moving progressively to an improved CBR-type scheme, in cooperation with HIRLAM, GMME and GMGEC ⇒ who : Martin Gera, with help from ? ⇒ who : Martin Gera, with help from ? ⇒ when : before end 2003 Improving the representation of low-level cloudiness ⇒ who : Jean-Marcel Piriou, Janko Merse, Siham Sbii, Blazenka Vukelic, ⇒ when : Improved diagnostics ⇒ who : each team ⇒ who : each team ⇒ who : A. Simon + M. Gera + L. Gérard + J.F. Geleyn + J.M. Piriou + ? ⇒ when : not later than early 2002
Ozone Aerosols Thermodyn. priority : low ↓ low	 Ozone coded as a prognostic spectral variable Impact of the climatological profile of ozone demonstrated 923 updated for aerosols Preliminary study for the visibility analysis taking into account aerosols More precise formulations of thermodynamics tested 	 Checking the interface with physics for ozone ⇒ who : Dominique Giard ⇒ when : 2002 ? Test of new climatological profiles of ozone in ARPEGE, introduction of an annual cycle ⇒ who : Mihaela Caian, with help from Dominique Giard for 923 ? ⇒ when : 2002 ? Comparison of the two studies on thermodynamics ⇒ who : Mihaela Caian ⇒ when : before end 2001 ? Towards an intermediate version for thermodynamics ? ⇒ who : ? ⇒ when : ? Deeper modifications to be discussed after the training course (end 09/2001)

ALATNET work plan (March 2000 - February 2004) : topics related to physics

The programme of work is split in 12 main topics. Each partner is responsible for 1 to 4 topics, even if the basic work is shared between all teams. The numbering of the involved research centres is :

- 1 Toulouse (Fr) 2 Bruxelles (Be) 3 Prague (Cz) 4 Budapest (Hu) 5 Ljubljana (Si)
- 1. Theoretical aspects of non-hydrostatism (NH)

2. <u>Case studies aspects</u> **P5**

2b: Validation of the current physics and non-hydrostatic dynamics : comparison to hydrostatic dynamics, to observations, identifying problems

P3

2d: Validation of the refinements in physics, identifying feed-backs and residual problems *P1* & *P2*

Note : responsibility shared with Romania for physics

- 3. <u>Noise control in high resolution dynamics</u> **P3**
- 4. <u>Removal of the thin layer hypothesis</u> **P1**
- 5. <u>Coupling and high resolution modes</u> **P5**
- 6. <u>Specific coupling problems</u> P3
- 7. <u>Reformulation of the physics-dynamics interface</u> **P2**
 - 7a: Study of the interactions between non-hydrostatic features and physical parameterisations P1 & P3
 - 7b: Analysis of the problems related to a 1-dimensional physics, impact of an exact introduction of diabatic forcing P1 & P5
 - 7c: Sensitivity of the physics/dynamics interface to vertical resolution P3 & P1
- 8. Adaptation of physics to higher resolution
 - 8a: Parameterisation of the small-scale features of convection P1
 - 8b: Test, retuning and improvement of the various physical parameterisation in the framework of a very high resolution P5
 - 8c: Improved representation of boundary layer *P1*
 - 8d: Improved representation of orographic effects P5, P1
- 9. Design of new physical parameterisations P1
 - 9a: Implementation of a new parameterisation of turbulence P5 & P2
 - 9b: Use of liquid water and ice as prognostic variables, implementation of a new microphysics parameterisation P2
 - 9c: New parameterisation of exchanges at sea and lake surface P4 & P2
 - 9d: Improved representation of land surface, including the impact of vegetation and snow *P2*, *P4 & P5*
 - 9e: Refinements in the parameterisations of radiation and cloudiness P4 & P2
- 10. Use of new observations P1
- 11. <u>3D-Var analysis and variational applications</u> **P4**
- 12. <u>4D-Var assimilation</u> **P1** 12d: Improvement of the treatment of humidity in data assimilation *P2*, *P3*, *P4* & *P5*

P2

Main ALADIN / ALATNET PhD theses and Post-Doc positions with topics related to physics

Ilian Gospodinov

Post-Doc, Bruxelles Reformulation of the physics-dynamics interface for a non-hydrostatic high resolution model

Martin Gera

Post-Doc, Bruxelles Improved representation of boundary layer

Jean-Marcel Piriou

Pre-Doc, Toulouse

Correction of compensating errors in physical packages; validation with special emphasis on cloudiness representation

André Simon

Pre-Doc, Toulouse

Study of the relationship between turbulent fluxes in deeply stable PBL situations and cyclogenetic activity

Margarida Belo Pereira

Pre-Doc, Toulouse Improving the assimilation of water in a NWP model

Karim Bergaoui

Pre-Doc, Toulouse (still under discussions)

Impact of a prognostic mass-flux convection scheme for NWP over Northern Africa and the Mediterranean Sea