Combining an EKF soil analysis with a 3dVar atmospheric assimilation in a limited area NWP model

Annelies Duerinckx Alex Deckmyn, Rafiq Hamdi, Piet Termonia

HIRLAM/ALADIN All Staff Meeting Reykjavik April 2013

Introduction

Introduction

Introduction

Initial Conditions

	Atmosphere	Soil
Open Loop	Interpolated from Arpege	Interpolated from Arpege
Free run	Interpolated from Arpege	6h forecast from previous run
3dVar	3dVar	Interpolated from Arpege
EKF	Interpolated from Arpege	EKF
ΟΙ	Interpolated from Arpege	OI
EKF+3dVar	3dVar	EKF
OI+3dVar	3dVar	OI

Soil Analysis

- 6h Cycling
- Prognostic Variables:
 - Soil moisture content: Wg, W2
 - Soil temperature: T_s, T₂
- Observations: T_{2m}, RH_{2m}
 - Interpolated to model grid with CANARI
 - To be used in point-wise EKF or OI

Soil Analysis

Extended Kalman Filter (EKF)

Soil Analysis

Extended Kalman Filter (EKF)

 $\mathbf{x}_t^a = \mathbf{x}_t^b + \mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}[\mathbf{y}_t^o - \mathcal{H}(\mathbf{x}_o^b)]$

• \mathcal{H} : observation operator

includes a model propagation

H: Jacobian of the observation operator
Calculated with finite differences

$$H_{i,j} = \frac{\delta y_{i,t}}{\delta x_{j,t0}} = \frac{y_i(x + \delta x_j) - y_i(x)}{\delta x_j}$$

Atmospheric Analysis

- 3 dimensional variational assimilation (3dVar)
 - 6h cycling
 - Only conventional observations SYNOP, SHIP, TEMP, PILOT
 - from MARS database
 - B-matrix: analysis-ensemble method

2m Relative Humidity RMSE (01–31 July 2010) run 0

Forecast time since 0000 UTC

Forecast time since 0000 UTC

2m Temperature RMSE (01-31 July 2010) run 0

Figure 2. Cummulative increments over July 2010 for root zone soil moisture (W_2)

Comparison with soil moisture observations at Lonze (Belgium)

Table 2. Correlation between soil moisture observations and deep soil moisture content of the analysis and the 6h forecast

	$W2_{fc+00}$	$W2_{fc+06}$
EKF	0.814	0.778
3dVAR + EKF	0.815	0.801
OI	0.263	0.207
3dVAR + OI	0.022	-0.049
3dVAR	-0.052	-0.086
OL	-0.052	-0.086

Conclusion

- Combination of 3dVar + EKF provides the best results
- Work in progress:
 - Q. J. R. Meteorol. Soc.
 - Comparison of offline vs. coupled EKF
 - To be clarified: large EKF increments in T₂

Discussion

Table 2. Mean cummulative increments over July 2010 averaged over the domain

	W_2	W_{g}	T_s	T_2
EKF	0.0116	0.00120	1.282	7.625
3dVAR+EKF	0.0109	0.00154	1.434	8.531
OI	0.01293	0.03932	-10.914	-1.737
3dVAR+OI	0.01281	0.03761	-11.412	-1.816

Table 1. T_2 increments for 2 July 2010: mean

	18-00	00-06	06-12	12-18
OI	0.00546	-0.109	-0.107	0.0629
EKF	-0.258	0.415	-0.0171	-0.02067

Thank you for your attention!