
Accelerating Harmonie with 
GPUs (or MICs)

(A view from the starting-point)

Enda O’Brien, Adam Ralph
Irish Centre for High-End Computing



Motivation
• There is constant, insatiable demand for more performance
• Conventional compute cores not getting any more powerful

– Sequential jobs already at performance limit
• Only way to more performance is with more parallelism.

– This will impose new algorithmic constraints (e.g., 
MPI_Alltoall will become impractical)

• General-Purpose Graphical Processing Units (GP-GPUs) 
offer massive (hardware) parallelism
– Many Integrated Core (MIC) accelerators are a new 

alternative (e.g. Intel Xeon Phi co-processor)

Exploiting this parallelism is a software challenge



Host-GPU Schematic (Fermi)

(PCI-e bus)



Host Node                 GPU Device

(PCI-e bus)

CPU GPU

Memory

Memory

(control)





Accelerator Programming Principles

• Send massed ranks of data through GPU in lock-step.

• Avoid dependencies, conditionalities

• Programmer should know (and control) what data is on 
“host” and what is on “accelerator”, and how data 
moves between them.

• Data movement should be minimized.  

– Ideal would be to run entirely on accelerator.

• CPU and GPU operations can run asynchronously



Weather Models on GPUs

• JMA ASUCA model (Takayuki Aoki)
– Translated to C, then to CUDA
– Entire model runs on (~4,000) GPUs 

• Dynamical core of NIM (NOAA/ESRL)
– Uses F2C (Fortran to C) converter
– Then HMPP directives from CAPS

• COSMO (CSCS/Meteo Swiss)
– OpenACC directives for physics
– Re-write in C++ (-> CUDA) for dynamics

• WRF  (?)
– Some parts translated to C/CUDA
– Directives…?



Options for “Accelerating” Harmonie

• Translating to CUDA (or C) not a practical option.

• OpenACC directives could work (similar to OpenMP).
– www.openacc.org 

• Intel MIC directives could also work (even more similar 
to OpenMP).

http://www.openacc.org/


OpenACC Compiler Support

• CAPS/HMPP
• PGI
• Cray

Quote from Intel (June 2012):  “OpenACC is a partial interim standard to 
cover only specific types of GPU. Intel is working on the committee to 
merge those facilities into future OpenMP”

(Intel has its own separate set of !DIR$ directives to support the Xeon Phi 
coprocessor).

Currently no OpenACC support from open-source compilers.



OpenACC Limitations
• Data arrays passed to GPU must be contiguous

– E.g. for array(L,M,N), these won’t work:
call sub1(array(1:L,1,1:N),...)

call sub2(array(2:L-1,M,2:N-1),...)



PGI Idiosyncrasies…
In original obshor.F90:

PGF90-S-0038-Symbol, ngomgfl, has not been explicitly 
declared (obshor.F90)

“Solution” is to replace:

USE GOMS_MIX

With:
USE GOMS_MIX, ONLY : NGOMGFL, YGOMUA5, YGOMS5, YGOMUA5_2D, &  
   
 & YGOMS5_2D, YGOMUA, YGOMS, YGOMUA_2D, YGOMS_2D

Similarly, in Bator.F90:
 USE BATOR_MODULE

Doesn’t work (though in theory, it should); instead use:
 USE BATOR_MODULE,   ONLY : TREF_FICOBS, CLSID, ZENTSUP



Arrays Declared with Zero Size

• Compile with “mpif90 –Mchkptr …” (i.e., pgf90)

• Get warnings (not errors):

PGF90-W-0435-Array declared with zero size 
(acvppkf.F90: 145)

• Offending source, local variables:
REAL(KIND=JPRB) :: ZCH1   (KLON,KLEV,0)
REAL(KIND=JPRB) :: ZCH1TEN(KLON,KLEV,0)

• Okay perhaps, until:

CALL  CONVECTION_SHAL( KLON, KLEV, …, ZCH1,ZCH1TEN)



More (explicit) Zero-size arrays 
• PGF90-W-0435-Array declared with zero size 

(Mandalay.F90: 364)

REAL(KIND=JPRB) :: zinfo(0)

Then:

 call getdb('MANDALAY',0,iret,info,0,zinfo,0,...)

...

 call putdb('MANDALAY',0,iret,info,0,zinfo,0)

(at least, this didn’t cause any trouble)

• PGF90-W-0435-Array declared with zero size (prep.F90: 
70)

REAL, DIMENSION(0) :: ZZS

(Harmless, since ZZS not referenced further).



Allocatable Arrays, set to Zero Size
• In mpa/turb/interface/aro_turb_mnh.h:
REAL(KIND=JPRB), DIMENSION(0,0,0), INTENT(IN) :: PEPSM
REAL(KIND=JPRB), DIMENSION(0,0,0) , INTENT(INOUT) ::PREPSS

• Those arrays not used anywhere in aro_turb_mnh

• aro_turb_mnh called from apl_arome, where:
ALLOCATE(ZEPSM (0,0,0))
ALLOCATE(ZEPSS (0,0,0))

• Relatively easy to live without these.

• Not the real problem (at least these are “allocated” ).



Changes to CPG, MF_PHYS
• 12 x SP_* arrays declared & allocated in SURFACE_FIELDS_MIX  with zero in at 

least one dimension:
– ALLOCATE(SP_SG(NPROMA,YSP_SGD%NDIM,NGPBLKS))
– The SP_* arrays are then “USE”d in CPG;
– Passed in argument list to MF_PHYS, becoming lower-dimensional PSP_* 
– Used locally in MF_PHYS (and passed on to other subroutines)

• Avoid the zero-dimension declaration (and run-time failure), e.g., 
– “USE” SP_* in MF_PHYS; 
– declare PSP_* as local vars in MF_PHYS, and ensure they have non-zero size

!    --- Moved from argument list

REAL(KIND=JPRB) :: PSP_SG(NPROMA,MAX(YSP_SGD%NDIM,1))

...

 IF (SIZE(SP_SG) .GT. 0) PSP_SG = SP_SG(:,:,KBL)



Un-allocated arrays, only showing at run-time

In yoe_cuconvca.F90:
  REAL(KIND=JPRB)   ,ALLOCATABLE:: RCUCONVCA(:)
 REAL(KIND=JPRB)   ,ALLOCATABLE:: RNLCONVCA(:)
...
 IF (.NOT. LCUCONV_CA) THEN
    WRITE(NULOUT,*) 'convective CA not active!‘
 ELSE
 ALLOCATE(RCUCONVCA(NGPTOT))
    RCUCONVCA=0.0
    ALLOCATE(RNLCONVCA(NGPTOT))
    RNLCONVCA=0.0 !NLIVES
 ENDIF

Then in cpg.F90, these arrays are passed to MF_PHYS, allocated or not:
USE YOE_CUCONVCA, ONLY : RCUCONVCA, RNLCONVCA
CALL MF_PHYS &

      & (CDCONF,IBL,IGPCOMP,IST,IEND,IGL1,IGL2,IGL3,IGL4,...
& ...,RCORI(IOFF),RCUCONVCA(IOFF),RNLCONVCA(IOFF), ...)

Allocation is conditional, but transfer is unconditional… 



(Un-allocated arrays, contd.)
In mf_phys.F90:
REAL(KIND=JPRB)   ,INTENT(INOUT) :: PCUCONVCA(NPROMA)
REAL(KIND=JPRB)   ,INTENT(INOUT) :: PNLCONVCA(NPROMA)

These arrays are passed further in call to APLPAR, and from there to ACCVUD:
REAL(KIND=JPRB)   ,INTENT(INOUT) :: PCUCONVCA(KLON)

REAL(KIND=JPRB)   ,INTENT(INOUT) :: PNLCONVCA(KLON)

Depending on LCUCONV_CA, these may never be referenced – but declaring 
finite memory for unallocated arrays causes trouble for PGI with HARMONIE!

•Trying to isolate the key bugs in simple “reproducer” programs, we found
– Using zero-length arrays worked according to the standard, but
– Using unassociated pointers caused segmentation faults.
– See post #981 by Adam Ralph on “HARMONIE SYSTEM” in HIRLAM forum.



OpenACC in acraneb.F90
669:  !$acc kernels

670:     IF ((LRPROX.OR.LRMIX).AND.(.NOT.(LRAUTOEV.OR.LRTDL))) THEN

671:        DO JLEV=KTDIA,KLEV

672:           DO JLON=KIDIA,KFDIA

673:              ZIRHOV=(PR(JLON,JLEV)*PT(JLON,JLEV))/PAPRSF(JLON,JLEV)

674:              ZQ=MAX(ZEPS2,PQ(JLON,JLEV))

                                                                                
                                               

809:     DO JN=1,IAUCR

810:  !$acc loop independent

811:         DO JLON=IIDIA(JN),IFDIA(JN)

812:            ZVOIGT=ZRHOZ0V(1)*ZVSH(JLON)/ZRSH(JLON)

813:            ZBZV=ZG4B(1)*ZNSH(JLON)/(ZRSH(JLON)/ZNSH(JLON))

   

4846:         PFRSO(JLON,JLEV)=PFRSO(JLON,KTDIA-1)

4847:         PFRTH(JLON,JLEV)=PFRTH(JLON,KTDIA-1)

4848:     ENDDO

4849:  ENDDO

4850:!$acc end kernels



OpenACC in Laitri.F90
Just 2 extra lines to offload a parallel region to GPU:
! Scalar code

IF (LOPT_SCALAR) THEN

! 32-point interpolations

!$acc region

  DO JLEV=1,KFLEV

    ! interpolations in longitude

    DO JROF=KST,KPROF

      ! interpolations in longitude, stencil level 0 

Z10(JROF)=PXSL(KL0(JROF,JLEV,1)+IV0L1)+PDLO(JROF,JLEV,1) &

 ...

    ENDDO

  ENDDO

!$acc end region



OpenACC in rrtm_rtrn1a_140GP
Some more explicit control over data movement:
!$acc data region local(iclddn_,z_surfemis,...,z_urad1__)

...

!$acc data region local(z_cldradu) copyout (p_totdfx,p_totdfc)

!$acc region

  DO JLON = KIDIA, KFDIA

    !-start JJM_000511

  ...

  ENDDO

!$acc end region

!$acc end data region

...

!$acc end data region



Using OpenACC with PGI
• Compile with:

FCFLAGS=… -Minfo=all –Mbackslash -acclibs 

-ta=nvidia,cuda4.1,fastmath,time

• “-Minfo” useful to show the “copyin” and “copyout” data.

• “-Mbackslash” needed by the write_cover_tex* files, e.g.:
 WRITE(NTEX,*) '\medskip\'

• Link with:

LD_LANG02 = -L/opt/pgi/12.8/linux86-64/12.8/lib -lacc1mp



Modest but Real “Acceleration” …

• Approx. 3x speedup of laitri and 
rrtm_rtrn1a_140GP, from DR_HOOK: 

# % Time

(self)

Cumulated

(sec)

Self

(sec)

Self

(1-CPU, 
CPU+GPU)

Total # 
calls

Routine

1 15.24 108.87 108.87 (33.5,10.1) 108.89 59475 LAITRI

2 5.17 145.80 36.94  371.81 3965 APL_AROME

3 4.73 179.59 33.78  33.80 63440 TRIDIAG_MASSFLUX

4 3.80 206.77 27.18 (12.2,3.7) 27.18 325 RRTM_RTRN1A_140GP

(Times include data-transfer times, and are for a small problem size)



Current Assessment

• Both Intel MIC and OpenACC directives have potential to 
significantly accelerate Harmonie.

• With OpenACC, most problems are with “standard” compiler 
(CAPS or PGI) 

– OpenACC directives themselves are relatively straightforward, 
and seem to work as advertised.

• Compilers/directives will evolve (quickly) 
– May all converge in an “OpenMP” standard.

• “Human” contributions will always be needed.



Future Compatibility?

Harmonie, 
April 2013

Accelerato
rCompilers

, 
April 2013

Mutually 
Compatible 

Harmonie/compil
ers

(201?)


