
Computations of moist turbulent fluxes

with the moist air entropy variable.
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1 Introduction.

Most (may be all?) present turbulent schemes are derived starting from systems of equations
expressed with the flux of potential temperature w′θ′ and of water vapor w′q′v. It is then at
the end of the computations that an important hypothesis is made: to replace (θ, qv) by the
couple of so-called Betts’s (1973) variables (θl, qt). The Betts (1973) variables are the potential
temperature and the total water content defined by

θl = θ exp

(
− Lvap ql + Lsub qi

cpd T

)
≈ θ

(
1 − Lvap ql + Lsub qi

cpd T

)
(1)

qt = qv + ql + qi . (2)

The last part of (1) is obtained with the approximation exp(x) ≈ 1 + x, valid for small x.

The aim of this note is to analyze some of the consequences if θl were replaced by a quantity
associated with the moist air entropy in a moist-air turbulent schemes. As an example of the
turbulent scheme, we will consider the moist version of the turbulent scheme of Cuxart et al.
(2000, i.e.“CBR00”) proposed in Masson (2013). As for the moist air entropy variable, it will be
represented by the moist-air entropy potential temperature θs defined in Marquet (2011).

2 The specific moist air entropy.

The specific moist air entropy is defined in Marquet (2011) by

s = sref + cpd ln(θs) , (3)

where sref and cpd are two constant terms and where the moist air entropy potential temperature
writes

θs = (θs)1

(
T

Tr

)λ qt ( p

pr

)−κ δ qt (rr
rv

)γ qt (1 + η rv)
κ (1+ δ qt)

(1 + η rr) κ δ qt
. (4)

The quantity (θs)1 is defined by

(θs)1 = θ exp

(
− Lvap ql + Lsub qi

cpd T

)
exp (Λr qt) (5)

(θs)1 = θ exp

(
− Lvap ql + Lsub qi

cpd T
+ Λr qt

)
(6)
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where Λr = (s0v − s0d)/cpd ≈ 5.87 is a key quantity. It depends on the standard entropies of water
vapor and dry air (s0v and s0d) and it is computed in Marquet (2011) by using the Third law of
thermodynamics (the Nernst’s theorem).

It is shown in Marquet (2011), Marquet and Geleyn (2013) and Marquet (2013a, 2013b) that
(θs)1 given by (5 is a good approximation of θs given by the full formula (4).

It is possible to further approximate (θs)1 by the formula

(θs)1 ≈ θ

(
1 − Lvap ql + Lsub qi

cpd T
+ Λr qt

)
, (7)

where the exponential function is approximated by exp(x) ≈ 1 + x, like in the last part of (1).

For sake of simplicity, only the case of water vapour and without condensed water will be
presented in this first version of the internal note.

This first non-saturated study is already an important step, because θs and (θs)1 defined by (4)
to (7) are different from θl = θ in case of water vapour, independently of existing cloud condensed
water, or not. Moreover, the impact of qv on (θs)1 is large. It is in particular much larger than
the impact on the buoyancy potential temperature defined by

θv = θ (1 + δ qv − ql − qi) , (8)

since Λr ≈ 5.87 for θs is about ten time larger than δ ≈ 0.608 for θv. In fact, the impact is about
2/3 of the impact of qv on the equivalent potential temperature defined by

θe = θ exp

(
Lvap qv
cpd T

)
≈ θ

(
1 +

Lvap qv
cpd T

)
, (9)

simply because Lvap/(cpd T ) ≈ 9 is about 2/3 larger than Λr ≈ 6.

Differently, there is no impact of qv on θl. It is the reason why the use of the moist entropy
potential temperature might lead to important differences even if no cloud exist, for instance in
the moist (non-saturated) PBL.

3 The 1D CBR00-modified scheme - Masson (2013).

As explained before, only the case of water vapour will be presented in this first version of the
internal note. Accordingly, the non-saturated (or just saturated / cloud-free) thermodynamic
variables used in the next sections are equal to

θl = θ , (10)

θv = θ (1 + δ qv) , (11)

θs ≈ θ (1 + Λr qv) . (12)

The purpose of this note is to compute the turbulent flux of the moist air entropy potential
temperature by two methods :

• 1) by computing w′θ′s with (θ, qv) replaced directly by (θs, qv) in the non-saturated version
of the 1D-scheme derived in section 0.3 of Masson (2013);
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• 2) by computing w′θ′s as a function of the fluxes w′θ′l and w′qv, if w′θ′l and w′qv are computed
with the non-saturated version of the 1D-scheme system 0.3 of Masson (2013) where (θ, qv)
is replaced by (θl, qv).

The first order fluxes w′θ′ and w′q′ defined in section 0.3 of Masson (2013) can be rewritten as

w′θ′ = −Kθ
∂Θ

∂z
+ Γθ Eθ (θ′)2 + Γθ Eq θ′q′ , (13)

w′q′ = −Kq
∂Q

∂z
+ Γq Eθ q′ θ′ + Γq Eq (q′)2 . (14)

The generic terms (θ, q) represent (θl, qt), and so (θ, qv) in non-saturation conditions. It is
assumed that the eddies are defined by θ = Θ + θ′ and q = Q+ q′.

The exchange coefficients are defined by

Kθ =
L

Cpθ
√
e

(w′)2 , (15)

Kq =
L

Cpq
√
e

(w′)2 , (16)

where L represents the mixing length, e the turbulent kinetic energy and with Cpθ and Cpq two
constants. These two constants are set to a common value in CBR00 and Masson (2013), and in
(almost ?) all turbulent schemes.

The Gamma coefficients in front of the second order fluxes are equal to

Γθ =
2

3
β

L

Cpθ
√
e
, (17)

Γq =
2

3
β

L

Cpq
√
e
, (18)

where β = g/Θ.

The E-terms represent a way to express the flux of buoyancy potential temperature in terms
of the basic first order fluxes (13) and (14). From (11), the non-saturated flux of θ?v is equal to

w′ θ′v = (1 + δ Q ) w′ θ′ + (δ Θ) w′ q′v , (19)

w′ θ′v = Eθ w′ θ′ + Eq w′ q′v , (20)

leading to

Eθ = 1 + δ Q , (21)

Eq = δ Θ . (22)
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4 E?-terms for the moist entropy potential temperature.

Let us determine the E?-terms associated to the moist air entropy potential temperature. From
(12), the non-saturated flux of θs is equal to

w′ θ′s = (1 + Λr Q) w′ θ′ + (Λr Θ) w′ q′v . (23)

If w′ θ′ given by (23) is replaced in (19), the result is

w′ θ′v =

(
1 + δ Q

1 + Λr Q

)
w′ θ′s + Θ

(
δ − Λr

1 + Λr Q

)
w′ q′v , (24)

w′ θ′v = E?
θ w′ θs

′ + E?
q w′ q′v , (25)

leading to the E?-terms corresponding to the moist entropy potential temperature

E?
θ =

1 + δ Q

1 + Λr Q
, (26)

E?
q = Θ

(
δ − Λr

1 + Λr Q

)
. (27)

It is easy to verify that the non-saturated CBR00 formulas (21) and (22) for θl = θ are obtained
from (26) and (27) with Λr = 0, which corresponds to θs = θ.

5 The first (non-saturated) method.

Let us compute w′θ′s with the generic variables (θ, q) replaced directly by (θs, qv) in the non-
saturated version of the 1D-scheme (13). The result is(

w′ θ′s
)
1

= −Ks
∂Θs

∂z
+ Γs E

?
θ (θ′s)

2 + Γs E
?
q θ′s q

′
v . (28)

The terms E?
θ and E?

q are given by (26) and (27). The moist air entropy exchange coefficient is
equal to

Ks =
L

Cps
√
e

(w′)2 , (29)

where Cps is a moist air entropy counterpart of the tow constants Cpθ and Cpq, to be determined.

The Gamma coefficients in front of the second order fluxes are then equal to

Γs =
2

3
β

L

Cps
√
e
. (30)

It is assumed that the definition (12) for θs corresponds to the following equation linking the
vertical derivatives of the mean variables Θs = θs, Θ = θ and Q = qv.

∂Θs

∂z
= (1 + Λr Q)

∂Θ

∂z
+ (Λr Θ)

∂Q

∂z
. (31)
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The second order flux (θ′s)
2 can be written as

(θ′s)
2 = [ θ (1 + Λr qv) ]′ 2 , (32)

(θ′s)
2 = { [ (1 + Λr Q) θ′ ] + [ Λr Θ q′v ] }2 , (33)

leading to the following weighting sum of the three second order fluxes

(θ′s)
2 = ( 1 + Λr Q )2 (θ′)2 + ( Λr Θ )2 (q′v)

2 + 2 ( Λr Θ ) ( 1 + Λr Q ) θ′ q′v . (34)

Similarly, the second order fluxes θ′s q
′
v can be written as

θ′s q
′
v = { [ (1 + Λr Q) θ′ ] + [ Λr Θ q′v ] } { q′v } , (35)

leading to the following weighting sum of two of the second order fluxes

θ′s q
′
v = ( 1 + Λr Q ) θ′ q′v + ( Λr Θ ) (q′v)

2 . (36)

According to all previous results, the flux of moist entropy potential temperature (28) can be
rewritten as (

w′ θ′s
)
1

= −Ks (1 + Λr Q)
∂Θ

∂z
− Ks (Λr Θ)

∂Q

∂z

+ Γs ( 1 + δ Q ) ( 1 + Λr Q ) (θ′)2

+ Γs

(
1 + δ Q

1 + Λr Q

)
( Λr Θ )2 (q′v)

2

+ Γs ( 1 + δ Q ) ( 2 Λr Θ ) θ′ q′v

+ Γs

(
δ − Λr

1 + Λr Q

)
Θ ( 1 + Λr Q ) θ′ q′v

+ Γs

(
δ − Λr

1 + Λr Q

)(
Λr Θ2

)
(q′v)

2 . (37)

The terms rearrange into(
w′ θ′s

)
1

= −Ks (1 + Λr Q)
∂Θ

∂z
− Ks (Λr Θ)

∂Q

∂z

+ Γs ( 1 + δ Q ) ( 1 + Λr Q ) (θ′)2

+ Γs ( δ Θ ) ( 1 + Λr Q ) θ′ q′v

+ Γs ( 1 + 2 δ Q ) ( Λr Θ ) q′v θ
′

+ Γs
(
δ Λr Θ2

) [
1 +

(
Λr Q

1 + Λr Q

) ]
(q′v)

2 . (38)
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6 The second (non-saturated) method.

Let us compute the same flux w′θ′s as in (28), but by using the fluxes w′θ′ and w′qv expressed
by the non-saturated version of the 1D-scheme (13) and (14), with the generic variables (θ, q)
replaced as usual by (θl = θ, qt = qv).

This flux is already computed in (23), yielding(
w′ θ′s

)
2

= (1 + Λr Q) w′ θ′ + (Λr Θ) w′ q′v . (39)

The first order fluxes w′ θ′ and w′ q′v are given by (13 ) and (14), with Eθ and Eq given by (21)
and (22), leading to (

w′ θ′s
)
2

= −Kθ (1 + Λr Q)
∂Θ

∂z
− Kq (Λr Θ)

∂Q

∂z

+ Γθ ( 1 + δ Q ) ( 1 + Λr Q ) (θ′)2

+ Γθ ( δ Θ ) ( 1 + Λr Q ) θ′ q′v

+ Γq ( 1 + δ Q ) ( Λr Θ ) q′v θ
′

+ Γq
(
δ Λr Θ2

)
(q′v)

2 . (40)

7 Comparison of the two (non-saturated) method.

Comparisons of (38) and (40) show that the two methods do not lead to the same results for the
turbulent fluxes of moist-air entropy potential temperature.

The first result is that even for the flux-gradient case (i.e. if all the Γ’s terms are equal to 0),
the two formulations are equal to each others if and only if Ks = Kθ = Kq, or equivalently in
terms of the constants of the scheme: Cps = Cpθ = Cpq. This result is obtained by identifying
the first lines of (38) and (40).

It seems that this assumption Cps = Cpθ = Cpq is made in most of the turbulent schemes.
However, the drag coefficient for water fluxes is sometimes set to a different value than the one for
heat in some surface schemes over the ocean (like possibly CD 6= CH 6= CE in ECUME-SURFEX).
This result is suggested by observations campains (POMME, FETCH, SEMAPHORE, CATCH,
EQUALANT99). In that case, the flux of moist air entropy depends on the method chosen to
compute it.

Moreover, results published in Siebesma et al. (2003, ATEX-S03) and Stevens et al. (2001,
BOMEX-S01) show that Kθ might be different from Kq, as shown in Figs.(1) for ATEX and in
Figs.(2) for BOMEX. Clearly Kθ < Kq within the in-cloud regions and within the PBL regions
bellow the cloud, for both ATEX and BOMEX.

However, it is worth noticing that the exchange coefficients are determined from the crude
formulas w′θ′ = −Kθ ∂Θ/∂z and wq′v = −Kq ∂ Q/∂z, with the second order fluxes missing. It
is difficult to know the impact of the missing terms in the computed values of Kθ and Kq.
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Figure 1: The vertical profiles for ATEX (Stevens et al, 2001).

The second result is obtained if the Γ’s terms are different from 0, with all the second order
fluxes acting in (38) and (40). The equality of the three constants (Cps, Cpθ, Cpq) implies that
Γs = Γθ = Γq. But even for this simplified case, differences exist between (38) and (40). These
differences are highlighted in red in (38). First, the factor (1 + δQ) in front of the flux q′v θ

′ in (40)
is replaced by the factor (1 + 2δQ) in (38). Second, there is a new factor [1 + (ΛrQ)/(1+ΛrQ) ]
in front of the flux (q′v)

2 in (38).

8 Conclusion.

This is a first preliminary study, limited to the non-saturated (or the just-saturated) case. But
this preliminary study already shows that the numerical value of the moist air-entropy flux may
depend on the way this flux is computed.
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Figure 2: The vertical profiles for BOMEX (Siebesma et al, 2003).

If the moist air entropy is indeed a key (thermal) variable to be used in the mixing processes
(turbulence and convection), it is not equivalent to use (θl, qt) or (θs, qt), except in the simplified
case where Cps = Cpθ = Cpq and Γs = Γθ = Γq = 0.

Differences are generated by the non-linearities and by the second order fluxes in the turbulent
scheme equations. Larger differences may appear as soon as the more realistic choice for Cps 6=
Cpθ 6= Cpq will be managed in the future.
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