
Status of assimilation methods at Météo-France speaker: C. Fischer

- 1. 4D-En-VAR
- 2. Heterogenous B & cloudy IR radiances
- 3. Other stuff (EnDA, B, ...)

4D-Var / Hybrid 4D-Var / 4D-En-Var

Barker and Clayton, 2011

Investigations into an alternative 4D DA method (G. Desroziers, J-T Camino, L. Berre)

- 4D-Var
- \checkmark Simplified description of **B** at initial time, and linear evolution of covariances.
- ✓ Possible improv. via an ens. of pert. 4D-Var (Météo-France, ECMWF): spat./temp. variations of error variances and correlations (wavelets).
- ✓ Difficult development and maintenance of TL/AD.
- Poor scalability of TL/AD.
- 4D-Var based on a 4D ensemble : 4D-En-Var
- Similar to En-KF.
- ✓ Keeps benefits of 4D-Var (global analysis, add. terms, outer-loop, ...)
- ✓ Localization of the raw covariances made in model space.
- Minimization cost similar to 3D-Var.
- Natural parallelization, and NL evolution of covariances.

4D-En-Var formulation

Minimization of

$$J(\underline{\delta x}) = \underline{\delta x}^{\mathsf{T}} \underline{B}^{\mathsf{H}} \underline{\delta x} + (\underline{d} - \underline{H} \underline{\delta x})^{\mathsf{T}} \underline{R}^{\mathsf{H}} (\underline{d} - \underline{H} \underline{\delta x}), \text{ with}$$

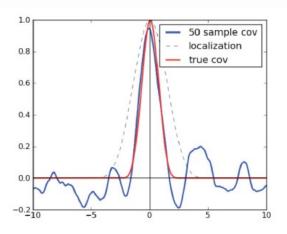
- **d** 4D vector of the innovations distributed in time,
- H 4D linearized observation operator,
- **R** 4D (but diagonal!) covariance matrix of obs. errors,
- $\underline{\delta x}$ 4D vector of the increments to be added to the 4D bg x^{\flat} , composed of K sub-elements (K slots for the pert. in time)
- $\underline{\mathbf{B}}$ 4D covariance matrix of bg errors, given by an ensemble.

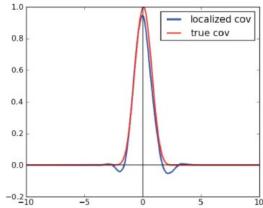
(Lorenc, 2012)

4D-En-Var formulation

$$\underline{\mathbf{X}}^{\mathsf{f}} = (\underline{\mathbf{x}}_{1}^{\mathsf{f}}, ..., \underline{\mathbf{x}}_{L}^{\mathsf{f}}),$$

where L is the ensemble size and


$$\underline{\mathbf{x}}^{f}_{l} = \underline{\mathbf{x}}^{f}_{l} - \langle \underline{\mathbf{x}}^{f} \rangle / (L-1)^{1/2}, I = 1, L,$$


are the deviations of the 4D pert. forecasts from the ens. mean traject.

$$\mathbf{P} = \mathbf{X}^f (\mathbf{X}^f)^T$$

Localization of bg error cov. (Schurr product):

$$\underline{B} = \underline{P} \circ \underline{C}$$

Whitaker, 2011

Implementations of 4D-En-Var

$$\delta \mathbf{x} = \mathbf{B}^{1/2} \chi$$

$$= (\mathbf{P} \circ \mathbf{C})^{1/2} \chi$$

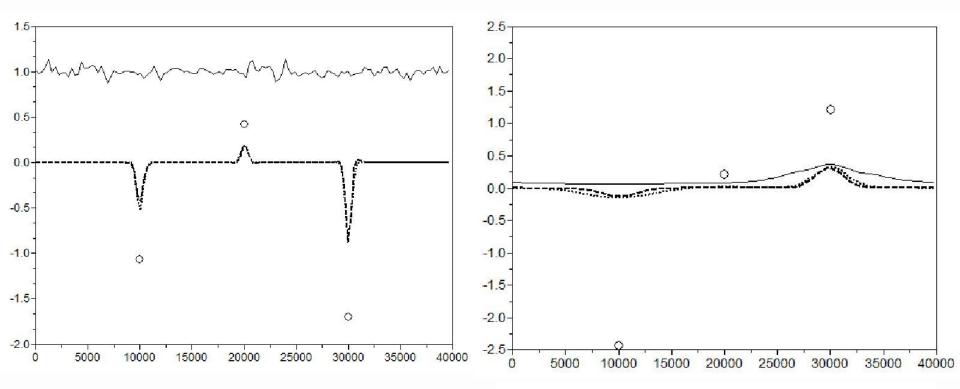
$$= \sum_{\mathbf{I}=1,\mathbf{L}} \mathbf{x}^{\mathbf{f}} \circ (\mathbf{C}^{1/2} \chi_{\mathbf{I}})$$

$$J^{b}(\chi) = \sum_{i=1,L} \chi_{i}^{T} \chi_{i}$$
, dim $\chi = N(N_{c}) \times L$ (or $K \times N_{c} \times L$ in 4D with model error)

Use of a Conjugate Gradient (CG) with $B^{1/2}$ change of variables.

(Buehner 2005, 2010)

 $\delta \mathbf{x} = \sum_{\mathbf{i}=1}^{n} \mathbf{x}^{\mathbf{f}} \mathbf{i} \circ \alpha_{\mathbf{i}}, \text{ with } \alpha_{\mathbf{i}} = \mathbf{C}^{1/2} \mathbf{\chi}_{\mathbf{i}}$


 $J^{b}(\alpha) = \sum_{i=1,L} \alpha_{i}^{T} C^{-1} \alpha_{i}$, dim $\alpha = N(N_{c}) \times L$ (or $K \times N_{c} \times L$ in 4D with mod. error)

Use of a Double Preconditioned CG (DPCG) with C preconditioning.

(Lorenc, 2003; Wang et al 2007; Wang 2010)

Comparison of increments 4D-En-Var / 4D-Var (Burgers model; paper in preparation)

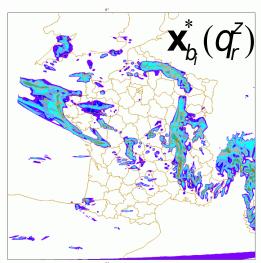
Observations at to

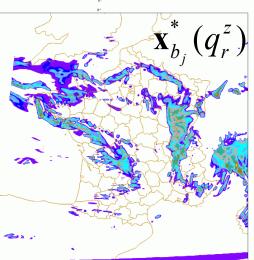
 $\delta \mathbf{x}_0$ at \mathbf{t}_0 :

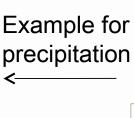
- 4D-En-Var (dashed)
- 4D-Var (dotted)
- bg error square-root (solid)

Observations at $t_f(t_0+6h)$

 $\delta \mathbf{x}_{\mathsf{f}}$ at t_{f} :

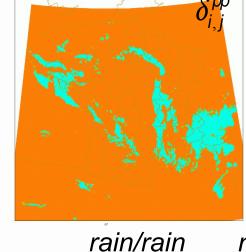

- 4D-En-Var (dashed)
- 4D-Var (dotted)
- bg error square-root (solid)

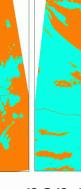



Modeling B for specific meteorological phenomena

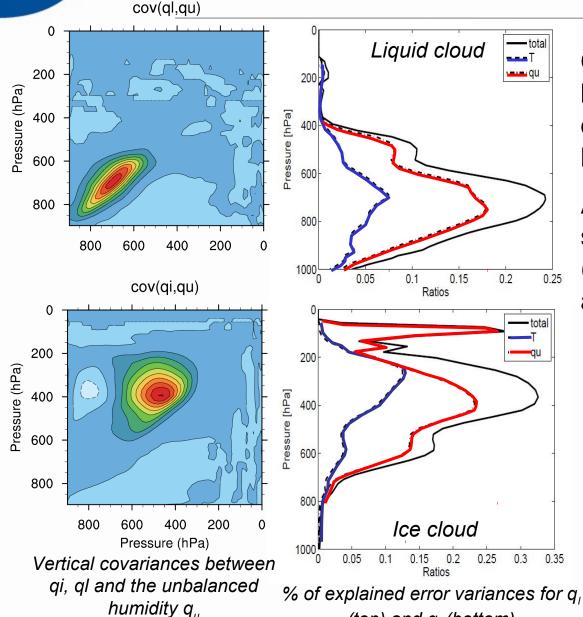
(Montmerle and Berre 2010)

Forecast errors are decomposed using features in the background perturbations that correspond to a particular meteorological phenomena.





Binary masks:


$$\varepsilon_{\mathit{f}_{ij}} = \mathbf{x}_{\mathit{b}_{i}}^{*} - \mathbf{x}_{\mathit{b}_{j}}^{*} \approx \left[G\delta_{\mathit{ij}}^{\mathit{pp}}\right] \varepsilon_{\mathit{f}_{ij}} + \left[G\delta_{\mathit{ij}}^{\mathit{cc}}\right] \varepsilon_{\mathit{f}_{ij}} + \left[G\delta_{\mathit{ij}}^{\mathit{cp}}\right] \varepsilon_{\mathit{f}_{ij}}$$

(G: Gaussian blur)

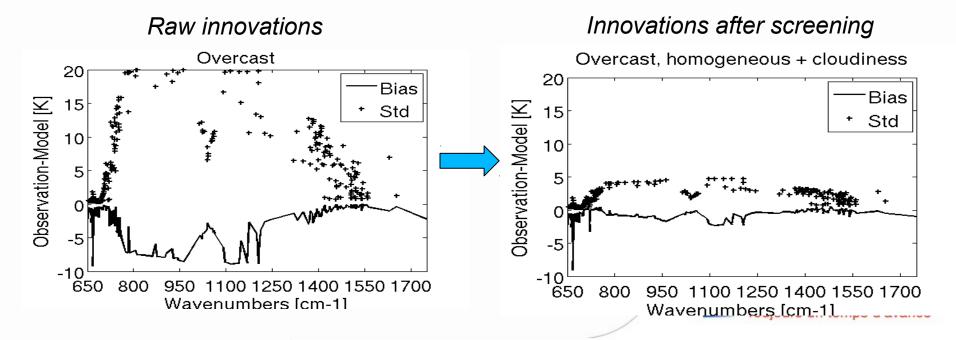
Assimilation of cloudy radiances in a 1DVar: B

(top) and q; (bottom)

Computation of background error covariances for all hydrometeors in clouds:

A mask-based method similar to Michel et al. (2011) is used, along with an extension of **K**_n:

an extension of
$$\mathbf{K}_{\mathbf{p}}$$
:
$$\begin{cases} \delta T = \delta T \\ \delta q = T_0 \delta T + \delta q_u \\ \delta q^{\alpha} = T_1 \delta T + T_2 \delta q_u + \delta q_u^{\alpha} \\ \alpha \in \{l, i, r, s\} \end{cases}$$

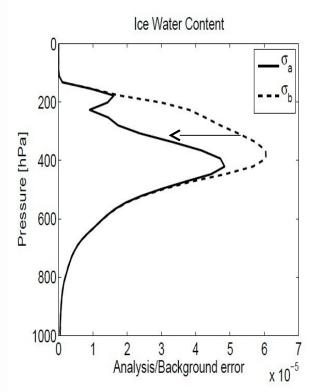


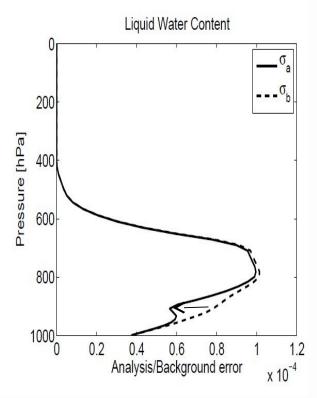
Assimilation of cloudy radiances in a 1DVar

Martinet et al. (2012)

Problematic: Non-Gaussian innovations due to wrong location of simulated structures and model deficiencies

- ⇒ **Simulation of IASI radiances using profiles of ql and qi**. Modelling of multi-layer clouds and cloud scattering with RTTOV-CLD.
- ⇒ **Selection of homogeneous overcast scenes** from a database of profiles extracted from AROME forecasts by comparing simulated and observed AVHRR radiances co-located with the IASI field of view

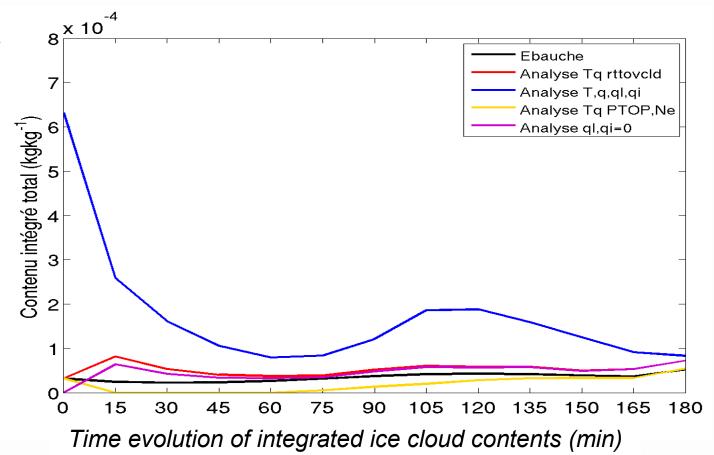



Assimilation of cloudy radiances in a 1DVar: stats of increments

Assimilation of IASI cloudy radiances

q₁ and q₁ have been added to the state vector of a1DVar, along with T and q

Reduction of background error variances for selections of high opaque cloud (left) and low liquid cloud (right)



 \Rightarrow Error stdevs are reduced for q_i and q_i (same as for T and q - not shown -), increments are coherently balanced for all variables.

Assimilation of cloudy radiances in a 1DVar: impact in forecast

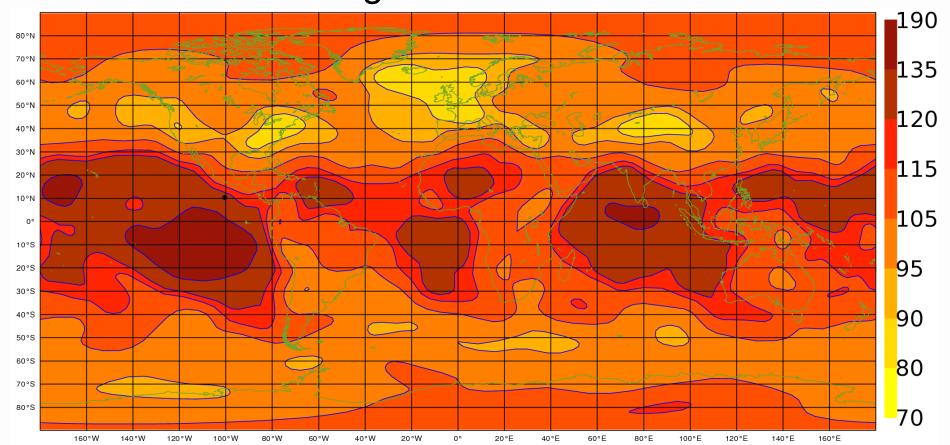
Evolution of analyzed profiles using AROME 1D

Example for low semi-transparent ice clouds:

⇒ Thanks to the multivariate relationships and despite the spin-down, integrated contents keep values greater than those forecasted by the background and by other assimilation methods up to 3h

Some concluding items

- Wavelets in Arpège 4D-VAR: presently tested in E-suite
- Heterogeneous B: rain/no-rain & radar assim (Montmerle, 2010), fog/no fog (Ménétrier & Montmerle, 2012); implementation in official codes on hold
- Other Arome B matrix aspects (Yann Michel):
 - Vertical deformation
 - Displacement error (PhD work just started)
- Implication in OOPS: actively take part in implementation of 4D-En-VAR (one solution implemented for L96 & QG models)

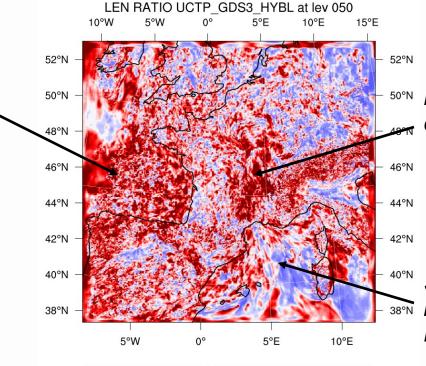


Recent evolutions and plans for (Arpège) EnDA

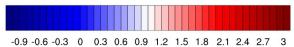
- Model error through inflation of forecast perturbations (2012).
- Flow-dependent correlations, with wavelet spatial filtering (2013).
- Increase of ensemble size (~ 24 members, 2014).
- Towards 4D-En-Var.
- Plans to install an Arome EnDA (AEARO) in link with EPS (PEARO)

Background error correlations using EnDA and wavelets

Wavelet-implied horizontal length-scales (in km), for wind near 500 hPa, averaged over a 4-day period.

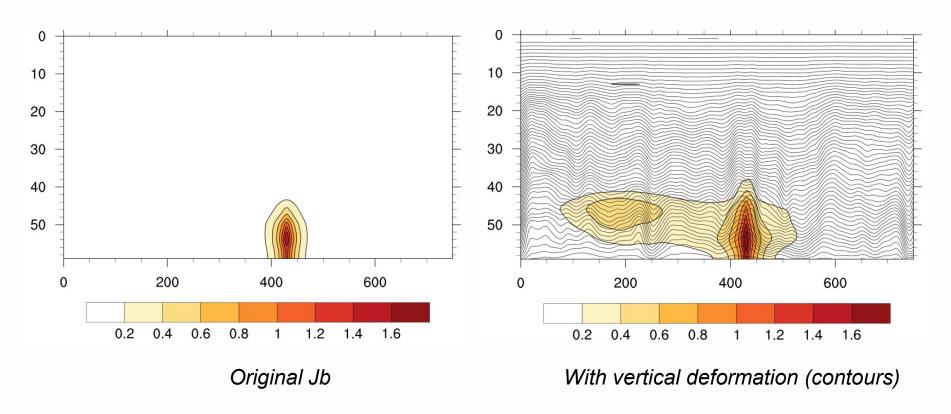

(Varella et al 2012, and also Fisher 2003, Deckmyn and Berre 2005, Pannekoucke et al 2007)

Vertical deformation for Jb in AROME


- A vertical deformation can be added to the Jb in AROME
- It can be estimated over a small ensemble (AEARO with 6 members) despite strong sampling noise, with spatial filtering
- References: Michel (2012 a,b)

Larger vertical lengthscale due to coupling

Larger vertical lengthscale in convective precipitation


Smaller vertical lengthscale in the inflow over the Mediterranean (Hymex case)

Vertical deformation for the in AROME

- Test with single obs. shows interaction with the balance (shown: T)
- Compact support formulation (following V. Guidard & C. Fischer) helps
- Further work concerns 3D deformation => post-doc in GMAP (J. Beezley)

þakka þér fyrir athygli þína

