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1. Introduction

Until present we considered the density stratification in the EFB turbulence closure
(Zilitinkevich et al., 2012) in terms of the buoyancy flux F,, which was taken proportional

to the potential temperature flux F”. In the wet air, F, depends also on the vertical
turbulent flux of specific humidity F_, so that F, =(bw)= F”3+0.61gF,, where g is the
acceleration of gravity, f=9/T, is the buoyancy parameter, T, is reference value of
absolute temperature (T, is the thermal expansion coefficient for ideal gas), w, @, g and

b=60+0.61gq are fluctuations of vertical velocity, potential temperature, specific

humidity (the mass of the water vapour per unit mass of fluid) and buoyancy, respectively,
and angle brackets denote averaging. Furthermore, condensation of the water vapour or
evaporation of droplets of liquid water suspended in the air affect the air temperature and

vice versa. To determine separately F?, F, and the turbulent flux of water droplets, we

generalize the EFB closure accounting for essential interdependence of the temperature,
humidity and liquid-water content.

We denote the actual values of the above listed meteorological parameters by the upright
capital letters: W, ©, Q and B, and the mean values by the same letters in Italic: W, @, Q
and B (so that W =W +w, etc.). Similarly we denote the actual, mean and fluctuation
values of the specific content of liquid water by A, A and a. The mean potential

temperature @ is defined as @=T(P,/P)""", where T is the absolute temperature, P is the
pressure, Py is its reference value, and y=c,/c,=1.41 is the specific heats ratio.

The fluxes F”,F, and F, appear in the Reynolds-averaged equations for the mean-flow
potential temperature @, specific humidity Q and liquid water content A:

%__85“9) +J +im

Dt oz c, (2.1)
DQ JF,
ot ™ 2.22)
DA_ _F, +m
Dt o (2.2b)

where J is the rate of heating/cooling due to the radiation heat transfer, A is the latent heat
of condensation, c, is the specific heat, and m is the rate of change of specific humidity

due to evaporation/condensation. Clearly, m=0 only in the presence of droplets of liquid
water.

In the conditions of the thermodynamic equilibrium, Q is maintained at the saturation
value: Q =Q, =(R/R,)e(T)/P, where R and R, are the gas constants of the dry air and
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the water vapour, and e(T) is the partial pressure of the saturated water vapour at the

temperature T, determined by the Clausius-Clapeyron equation: de/e= (1/R)dT/T?.
Then Q depends only on @ and P.

In the wet atmosphere the momentum equation becomes:

DV VP
Ft——?+VAV+ﬂ®ve, (23)

and the thermodynamic equations for the potential temperature, the specific humidity and
the specific liquid water content become:

DO A

E:KA@-Fam(@,Q)a (24)
DQ

29 1 4Q-m©.Q), (252)
DA

E:KAAA'Fm(@yQ) ) (25b)

where V =U+u is the actual velocity [consisted of the mean U=(U,,U,,U;)=U,V,W)
and the fluctuation u=(u,u,,u,)=(u,v,w) velocities], D/Dt=0/ot+V.0/0x;,
O, =0+ (1 /1, -1)T,Q=0+0.61T,Q is the virtual temperature, x, and w, are the
molar masses of the dry air and the water vapour, v is kinematic viscosity, x is heat
conductivity, x, and x, are diffusivities for the water vapour and water droplets,

respectively. We take into account that the condensation/evaporation rate m depends on
temperature and humidity. Typical atmospheric flows are characterised by very low Mach
numbers. Therefore, analysing turbulent statistics associated with the temperature, humidity
and liquid-water content, the dependence of m on the atmospheric pressure can be
neglected.

Equations (2.4) and (2.5) can be rewritten in terms of ®, and the equivalent temperatures
0,=0+1Q/c, and ©,=0-1A/c,:

DO,
Dt - KA@V + mv(®v!®el)v (26)
DO,
Dt =KAB,, (2.7a)
DO,
YRRLEES (2.7b)



where

m, (®v'®ei) = |:Ci_(&_ ]TO} m(®' q) : (28)

p w

For simplicity we took «, ~x, ~ k. Subtracting the averaged version of Egs. (2.6), (2.7)
from the original equations yields the following equations for the fluctuations 6,, 6,, and
0,

2
D% _xng,—wh Mg Mg (1.v)0, +((u-V)0,), (2.9)
Dt g 00, " o6, '
DO, N2
& =xkAQ, —W——U-V)O, +((u-V)8,),
Dt KAG ﬁ ( ) ei <( ) 9I> (210)
where i=1,2, and
2_ 00, 2 _ 590
N?=2 po Ng =4 . (2.11)

are the Brunt-Vaisala frequencies based on the virtual and the equivalent temperatures.

It follows from the definition of the virtual and the equivalent temperatures that

Q:(i_Mj (G)el_@v)’ (212)
Cp Hy,
A
®:®e1_§Qa (2.13)
Cp
A=—(0-0,). (2.14)

In the next section we employ Egs. (2.9) and (2.10) to revise the basic equations of the EFB
closure.

2. Budget equations for second moments accounting for
condensation/evaporation

The budget equations for the turbulent kinetic energy (TKE) E, =%<u2> ; the “energy” of
the virtual-temperature fluctuations E, = %<HV2> ; the virtual-temperature flux F) = <u ¢9V> ;
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and the second moments representing the “energy” of the equivalent-temperature
. 1 1 .
fluctuations Eel:E<0e21> and Ee2=5<¢9e22>; the equivalent-temperature  fluxes

F®=(ug,) and F® =(ué,,); and the cross-correlations of the virtual and equivalent
temperature fluctuations E,, =(6,6,,) and E., =(6, 6,,) read:

v “el v Ye2

DE, & U,
+— D =—1,—+FY — ¢,
Dt Tar Tx T Ty AR A (3.1)
2

DE, i ) :_FZ(V)N_+28mv E€+8mv E,—¢, 3.2)

Dt oz B 00, 00, '

(v) 2
PR Qe - 2e N L opE, - <9v ap> M pw
Dt oz ; PRANETREE)
LU (3.3)
00,
2

DEei +2 q)ei - _ Fz(ei) M_ Egi s (3 4)

Dt oz Jij '

(ei) 2 .

O % g =g My pE, —i<«9ei @>—8§”, (35)

Dt &z ,B PR :
DECi_'_E (F(eI)N +F(V)N )1 am Eci+28mv Eei_gci’ 3.6
bt |z g o, "o, (3.6)

In Egs. (3.4)-(3.6) i=1,2. Here, 7;; =(u,u;) is the Reynolds stress, ®,, ®, and ®!" are the

third-order moments representing the turbulent transports of the TKE, of the “energy” of
the virtual temperature fluctuations and of the virtual-temperature flux:

1 1,5
®, = S <pw>+§<u W>, (3.7a)
e
D, = E<6?V W>, (3.7b)
. 1 2
i ):2_po<p‘9V>+ (we,). (3.70)

and p, is the reference value of the air density.

The third-order moments:



1/,
@y = (65 w), (3.83)

L1

q)(el) — . 2 ),
= (P6)+ (W6,) (3.8)
(Dci = <0v eei W> (38C)

express turbulent transports of the “energy” of the equivalent-temperature fluctuations, the
equivalent-temperature fluxes, and the cross-correlation between fluctuations of the virtual
and equivalent temperatures.

The terms ¢, ¢, and & are essentially positive operators representing the dissipation

rates for E,, E,, F, E., F* and E,, respectively. Following Kolmogorov (1941),
they are taken proportional to the ratios of the dissipating moments to the dissipation time
scale, t; :

ci?

syl Ec 29
“\ox ox/ (3:92)
E
E, =—K 0\/ AQV = 0 y
o =—K( ) .t (3.9b)
F(V)
g =—x (WA B,)+Pr (6, Aw))= —. (3.9¢c)
FiT
E
= QAQ = -el ’
g5 =—K(0, AG,) Cot (3.10a)
@ =G
Ep Z_K(<WA9ei>+Pr<0eiAW>):C(i}—i)t’ (310b)
F o
Eci
g =-x((0,00,)+(0, 0,))= . (3.10c)

where x is the temperature conductivity, Pr=v/x is the Prandtl number, C,, C,, Cg,
C, C and C, are dimensionless constants.

As demonstrated by Zilitinkevich et al. (2007), the term—p0’1<¢98p/az> in the budget

equation for F, is essentially negative and scales as ﬂ<02>, so that the pair of term



B(0°)— p5'(0ap] az) is expressed as C, B(0°), where C, <1 is empirical dimensionless
constant. We apply the same parameterization to the analogous terms in Egs. (3.3) and

(3.5):
(6,(86, - p*epiaz))=C, p(67), (3.11a)
(6,(86, - py aplaz))=C BE,, (3.11b)

which yields the simplified versions of these equations:

om

DF, 0 N2 om
—r -

ot "o O U GRS T p R e g R e (3.12)
DF® 8 Ng | ~ei ¢
Tt+§®(z )=—2E27+Cé 'BE, — &, (3.13)

where E, =(8/NYE, is the turbulent potential energy, and C{ <1 is empirical
dimensionless constant.
3. Steady-state regime of turbulence

In the steady-state, the left hand sides (I.h.s.) of the above budget equations turn into zero,
and the equations become algebraic. Then Egs. (3.4), (3.6) and (3.13) yield:

. . N2 . v

R =29 A E,t, e |1 ey, 2t ] @)

p 2A, B¢

ei ei Nezl

Eei :_Cé )tT Fz( ) P (42)

E - NSl ew, pef N2 oeey OM,
ci __LPci t; ﬂ , th N_ezi+ p tTE ’ (43)

where ¥, W are combinations introduced to make shorter further relations:
Y. o=| Cl-t om, ) (4.4a)
ci ci T 5@\, ! '



-1
ei — ei ei N; amv
e :{caucg, "yt N2(1+ 2t; C{ )Wﬁﬂ , (4.4b)

and A, =E,/E, is the share of the “vertical energy”.

In the turbulent kinetic energy (TKE) budget Equation (3.1), the first term on the r.h.s. is
the rate of the TKE production: —z,,0U,/0z=7S , where z and S are absolute values of the

vectors T and 0U/dz , and the second term S F" is the rate of conversion of the TKE into

the turbulent potential energy (TPE) E, =(8/N)’E,. The ratio of these terms is called flux
Richardson number

_ )
Ri, = PF, .
TS (4.5)

Using these notations, Eq. (4.1) becomes

_ (ef) _ Ri
PO =Ky 1o, Iz, 5)
C.p 2A, (1-Riy)

where the eddy viscosity K,,, as well as A,, are precisely the same as in the dry
atmosphere:

Ku =2C A B¢ty (4.7)

C,(1-2C, Ri, /R,)(1-Ri,)—3Ri,

= _ . (4.8)
(L-Ri,){3+C,[3-2(1+C,)Ri, /R, I}

The dimensionless empirical constants C_, C,, C,, C_, R, have been already estimated
by Zilitinkevich et al., (2012).

The steady-state versions of Egs. (3.2) and (3.12) yield:

w N? om,
EHI—\PptT(FZ()7_£Eci]’ (4.9)
v N? om, _e
F©V =y, tT[Z(EZ —CQEP)7——88_ F >), (4.10)

where ¥, and ‘P are combination:



-1
_ om,
¥, :(Cpl—ZtT é@vj : (4.11)

-1
_ om,
Yo :[Cpl—tT @J : (4.12)

Equations (4.9)-(4.10) in combinations with Eq. (4.3) yield:

¥, Ri 2 1-Ri, CEy.
E _ f{1+‘{’0itT%Ee2[l+2Ath2NZ‘PF‘P( MG ¥y H} (4.13)

E. 1-Ri, 20, Ri, 2A
2 () CH ¥ Ri
FZ(V) :—KM N ‘{IF 1_ C@ EP +amv IPF 2t-|- 1_ 2] c . f NQZI (414)
BC, A Ex 00; N 2A,(1-Ri;)
2
_x, N
p

where K, is (by definition) the eddy conductivity, and ¥ is one more combination:

h. om, N2
_ (ei) v ei
Y =1+2CEt, 0. N (4.15)

Equations (4.7) and (4.10) yield the relation:

2N? = Ri _ (4.16)
2C. A (I-Ri,)

where Ri=N?/S? is the gradient Richardson number. Substituting Eq. (4.16) it (4.14)
yields the expression linking the turbulent Prandtl number Pr; , the flux Richardson number
Ri, , and the gradient Richardson number Ri:

. -1
- _ 2( CEIWyRi
pr. = u _RU_Co g CoBo | yeny OM, N; 1-—2 @ L (4.17)
A E, 60, N2\~ 2A(1-Ri,)

ei

It follows that the dependencies of Ri, or Pr, on Ri, playing the key role in the EFB

closure, are generally affected by the processes of condensation/evaporation. With this
remark, the dependencies of the dimensionless turbulent fluxes of momentum and heat on
Ri, have precisely the same form as in dry air.



Using Egs. (2.12)-(2.14) we find link between the fluxes F”,F, , F, and the fluxes of the
virtual and the equivalent temperatures:

-1

E :(ﬂd—ﬂw-l- _iJ (F(V)—F(e”), (4.18)
q 0 z z
Fhu Cp

A

O _ ey _ A
F,” =F S Fy. (4.19)

Cp ( ©) (ez))

Fa :7 l:z - I:z : (420)

Taking partial derivatives of m equal to zero yields the fluxes of the equivalent F* and
virtual F) temperature fluctuations:

2 @) C Ri @eczRi )
Fz(ei) _ —KM CciNei 1— Ca CCI R-If 1+ CH Cci RI. ’ (421)
C.p( 2A(-Rij)) 2AC(1-Ri))

FZ(V) = _KM

N2C C,C.Ri
F[l— ks f} (4.22)

BC. | Al-Ri)

where i=1,2. Substituting Egs. (4.21)-(4.22) into Egs. (4.18)-(4.20) allows us to determine
the fluxes F”,F, and F,.

Conclusions
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