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Unification of thermodynamics 
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Unification steps via thermodynamics ?

or

in fact the presentation will oscillate between the two meanings …



Introduction 
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• Idea behind the talk: clean thermodynamics does not need to 
be too complicated … and it has nice practical applications.

• But reaching this advantageous situation requires a good deal 
of consistency.

• This does not mean that there should be no simplifications with 
respect to the full complexity of the system … but that they 
should be decided as a whole and ab-initio!

• But sometimes practical implementation decisions do have 
some level of arbitrariness => the transversal issues (critical if 
we want to work as a community), like for instance 
conservation properties, should in principle be treated through 
global constraints.

• But the devil is still sometimes in the details! Thus it matters to 
also think conceptually in all generality (barycentric view and 
exact specific weighting of dry air properties => consequences).



Split of the presentation 
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• Examples:
• A simplified ‘toy computation’
• A curiosity concerning radiation and heat diffusion
• The paradox of moist entropic considerations (Emanuel) 

• Rules: 
• Additivity
• Conservation of theoretical invariants
• Practical consistency in discretisation

• Conditions of application:
• Simplifying (and structuring) hypotheses
• Algorithmic hurdles

• A practical view of the three Laws of thermodynamics for the 
atmosphere



es(T)

Irreversible saturation adjustment calculation
Cp.T+L.(R/Rv)(e/p)≈Χτε

The ‘black line’ is in fact not a straight line because Cp and R vary with qv and L with T => 
exact equation:

Cond.

Evap.

hyperbole branch
There is even an extension to the computation of the irreversible moist adiabat
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Radiative-diffusive ambiguity: a curiosity

We shall come back to the equation below later (in more 
details).

And they indeed do !

Here, what is important to notice is that the sum of the 
diffusive heat flux Js and of the radiative flux Jrad makes 
them indistinguishable, from the point of view of what the 
dynamical part of the model will ‘feel’ from the 
parameterisation computations (all other terms have to do 
with independent water species’ budgets, those not). 
Numerical compensations can therefore happen …  



Radiative-diffusive ambiguity: manifestation

Courtesy of J. Mašek



K. Emanuel’s example: dry convective 
turbulence

• A statistical approach to dry turbulence: system 
at radiative-(dry)convective equilibrium. The 
convection compensates the built-up of a 
temperature jump at the surface  

• Entropy budget:

• Vertical integral:
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K. Emanuel’s example: moist convective 
turbulence (the naive approach)

• Still statistical approach: dry convection with surface 
flux balance (radiation=heat) is a heat engine => what 
about moist convection?

• Simplify: Cp=Cste, R=Cste, e<<p, etc…

• Vertical integral:

• Zero (assuming solar heating is compensated by 
evaporation only at the [oceanic] surface)!

irr
radv

p s
T

Q

dt

dq

T

L

dt

pd
R

dt

Td
C ++





−=





−





 )ln()ln(

0=




+−=∫ ∫ ∫

cloud

vcool
irr dt

dq

T

L

T

Q
s



K. Emanuel’s example: moist convective 
turbulence (the correct approach)

• Stop simplifying : R/Cp=R(q)/Cp(q), Lv=Lv(T), e≠0

• Vertical integral:

• The latent heat term disappeard and we have a new ‘shape’ 
for the heat engine expression!

• Beware: even this is done with some simplifications (see 
later).
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Additivity rule 
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• When having a complete system of parameterisation 
algorithms, one must know how to combine the outputs of 
individual computations in terms of evolutions of the main-
model’s prognostic variables.

• In the case of water species (or any ‘passive tracer’ of course) 
things are simple thanks to the intrinsic linearity of the 
tendency equations.

• But for energy linked quantities (cpT+Φ, (u²+v²)/2, …), this is 
not anymore true.

• On must then realise that tendencies (which do have a lot of 
conditional aspects in their definition) ARE NOT ADDITIVE: 
δ(cpT) ≠ cp δT + ∑T(∂cp/∂qx) δqx  (in time discretisation)!

• Only fluxes (which have an intrinsic physical meaning) ARE 
ADDITIVE. 

This gives a central role to the Green-Ostrogradsky theorem
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Transversal conservation issue

Taking the ‘heat part’ of the ‘specific moist enthalpy + geopotential’ defines S’li as 
the exact counterpart of cpd.T+Φ for the fully dry case. It corresponds to the dry 
static energy in the unsaturated case got after evaporation (interpretation of Betts’ 
system).Moreover, in the general case, local conservation of S’li  is equivalent to 

conservation of the quantity (cp.T+Φ-Lv(0).ql-Ls(0).qi), with Lv/s(0) the 
temperature-independent extrapolations of Lv/s at 0 K. The linearity of the last two 

terms allows to develop in function of the various transport fluxes of the water 
species (diffusion  & precipitation) and to so obtain a Green-Ostrogradsky-type 

thermodynamic equation.

Catry et al., 
2007, Tellus A
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Basic assumptions for consistency
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• Two types of consistency ought to be sought when designing a 
parameterisation set:
• Between the ‘dynamical’ and ‘physical’ parts of the model. Here the 

Green-Ostrogradsky approach is the easiest one (using the specific 
moist entropy as synthetic variable would be equivalent, but the 
way-back-computations are very complex; neither of the existing 
potential temperatures can help if one wants an exact solution). In 
the non-hydrostatic case, the issue about projecting the energy 
tendencies on the temperature and pressure prognostic variables also 
appear, but it exists in all solutions, albeit under differing shapes.

• Between the individual parameterisation computations. There, if a 
policy for global conservation of the invariants exists (see just 
above), the issue is shifted to the one of having the same basic 
hypotheses on all sides. This requires a clear, compact and 
purposeful definition of so-called ‘simplifying hypotheses’ which 
become de-facto ‘structuring constraints’.  

• All this appears simple and logical. Yet it is very hard to be 
enforced in models’ design. Nevertheless …



Impact of (no) enthalpy conservation (1/3)
• The following will have to do with the intra-time-step variations 

of Cp, Cv (and hence R), following the phase changes of a 
barycentric multi-phasic system (here qv/l/i/r/s)

• Using Cp=Cv+R and the first Law of thermodynamics, one gets 
a Green-Ostrogradsky form for the evolution of enthalpy (with 
δm a tag for conservation or not of the total mass and with P’ 
& P’’’ the mass-weighted vertical integrals of phase changes 
with respect to vapour):

 

δm=1 δm=0 



Impact of (no) enthalpy conservation (2/3)

• It is sometimes customary to say that neglecting the time 
variation of Cp (or Cv, or R) during the ‘physical time-step’ 
(under the influence of phase changes) has little impact.

• We shall now see that this is not true at all at the ‘NH 
scales’.

• The trick, given the compact shape of the previous flux-
conservative form of the enthalpy equation, is just to 
replace on the left-hand side ‘d(Cp.T)’ by ‘Cp.dT’ !



Impact of (no) enthalpy conservation (3/3)

without enthalpy conservation with enthalpy conservation

Precipitation patterns are roughly the same, but the local intensity 
may be very different, nearly doubled at maximum

Courtesy of R. Brožková

ALARO test (with 3MT in order to make up for the difference 
between convection ‘permitting’ and convection ‘resolving’) on 2.3 
km mesh (90s time step); 6h precipitation on 18/05/2008 (+12h to 
+18h) 



‘Simplifying’ assumptions  and/or ‘structuring’ constraints
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• Barycentric system (condensates are an integral part of the parcel)
• Hydrostatism (for the vertical gradient aspects in ‘physics’)
• Zero assumed volume for condensates
• Gases obey Boyle-Mariotte’s and Dalton’s laws (together with 

the previous one => p/(ρ.T)=Rd.qd+Rv.qv=R)
• Homogeneity of temperature across species (even for falling 

condensates)
• Constant values of specific heats across the atmospheric 

temperature range (a bit problematic for ci)
• Linear variations of latent heats with temperature
• In presence of condensates, water vapour partial pressure 

around them depends only on temperature (no treble phase 
situation, though in practice many results may be robust to that …)

• Clausius-Clapeyron relationship

... and then nice analytical results (including the ones already 
presented) become possible!



A bit more detail about the ‘barycentric’ issue
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• Barycentric system (condensates are an integral part of the parcel)
• Hydrostatism (for the vertical gradient aspects in ‘physics’)
• Zero assumed volume for condensates
• Gases obey Boyle-Mariotte’s and Dalton’s laws (together with 

the previous one => p/(ρ.T)=Rd.qd+Rv.qv=R)

The idea behind all this is the following:
• The system of irreversible condensation/evaporation of drop/flakes is infinitely 

complex (should the surface pressure in a model know that a component aloft 
changed phase before or during its fall? rather not! ).

• The best way of avoiding the problem is:
• to make the simplification that the accelerations (positive or negative) are 

neglected => falling species are always at their equilibrium speed;
• to consider that this equilibrium is reached because the existing 

differential of pressure between the ‘below’  and the ‘above’ of 
drops/flaxes is the way by which the information about the weight  of 
condensates transfers to the averaged pressure of the atmospheric gas.

• This also automatically applies to non-falling cloud condensates, of course.
• The state equation p=ρ.R.T, preserved during phase changes, acts as a filter.



Algorithmic hurdles (i.e. devils in the details) (1/2)
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• There are several types of them: linked to the (vertical) space 
discretisation, linked to the time discretisation (degree of 
implicitness), combination of both (fight against linear and 
non-linear instability), basic decisions about the considered 
process’ behaviour.

• The latter are the most interesting ones from the purely 
thermodynamics point of view. The decisions are about:
• Reversible or irreversible character (for instance condensation is 

reversible and precipitation irreversible; and yet microphysical 
packages sometimes mix them without caution).

• Local adjustment or transport-type process (nature does not make 
such a distinction, but in models we need it most of the time, for the 
sake of simplicity).

• How to deal with the treble phase problem (even if the final 
computations may be solved by linear combination tricks, this 
contradicts the way in which we obtained, in the case of two phases 
only, the simple formulae allowing this strategy).



Algorithmic hurdles (i.e. practical conseqences) (2/2)
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• Reversible or irreversible character:
o for irreversible saturation conditions (precipitation) we have

o for reversible saturation conditions (no precipitation) we have

• Local adjustment or transport-type process. The issue is here:
o whether to use (q/r)sat as implicit target for a return to saturation (in 

the transport case where one cannot anticipate the change of  [T,p] 
characteristics along the vertical displacements;

o Or to use (q/r)w (wet-bulb value) as explicit target for a return to 
saturation (in order to implicitly couple the temperature and humidity 
evolutions in the local case) 

• The treble phase problem: there is no ideal solution; probably 
an additional prognostic quantity ought to be defined and 
added in order to keep both consistency and physical realism!  

 

 



Excursion towards turbulence: so-called 
‘moist conservative’ transforms (1/2) 
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• When trying to compute turbulent fluxes in a situation where 
cloudiness is different from 0 or 1, or simply when it changes 
along the vertical, one is facing two delicate issues:
• (1) The calculation of the buoyancy flux <w’.ρ’> becomes extremely non-

linear and complex (we shall come back to this issue later);
• (2) The interaction between phase changes and transport of heat, water 

vapour and condensate(s) during the ‘physics time-step’ is not tractable.
• Concerning the issue N°2, Betts (1973) proposed to use two so-

called ‘moist conservative’ variables, namely the total water 
amount qt and the liquid water potential temperature θl (no 
consideration of the ice phase in those early years!).

• While the conservative character is only approximate and the 
advocated link with entropy wrong, what remains from Betts’ idea 
is the ‘transform’ method: (i) evaporate (with temperature 
change), (ii) transport both variables and (iii) condense back.

• The last step needs additional hypotheses, linked to the issue N°1!



Excursion towards turbulence: so-called 
‘moist conservative’ transforms (2/2) 
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• One very misleading idea is that Betts’ method (despite its big 
practical advantages) makes transparent the transition from the 
‘dry only’ case (θ) to the ‘moist one’ (θl), the latter starting only 
when condensation appears. This is thrice wrong.

• First of all the problems linked with the presence of water start 
even without latent heat release. Water vapour is lighter than dry 
air and this favours an increase in buoyance with increasing qv.

• Second, and most importantly, θ plays a double role in the truly 
dry case (favorite to turbulence theoretical studies): tracer of 
density (buoyancy) and of entropy (conservation). In the moist 
case this is split: θv takes over the density role but is not 
conserved alike entropy (and neither is θl, see above and later). 

• Third, there is a term in the buoyancy computation which does 
not scale with the presence of cloudiness and thus requires special 
attention (proportional only to the gradient of total water).



Short reminder 
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• First Law of thermodynamics: Conservation of energy (heat 
Q + work W)

• Second Law of thermodynamics: For a closed system where 
the change of entropy S due to a heat source is the ratio of 
the latter to temperature T (dQ=T.dS):
• Irreversibility (diabatism) implies increase of entropy;
• Adibatism equals conservation of specific entropy.

• Third Law of thermodynamics: At 0 K, entropy vanishes.

• We shall now see what differences make the consideration of 
dry air also as an ‘interactive’ part of the air parcel (i.e. 
going for it from ‘conservative’ to ‘non-conserved’ ideas).



Computations of   s   θs
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Budget of entropy is difficult to 
compute :

Entropy = state function  measurable at each 
point:

The 2nd Law gives the specific moist
entropy with exact consideration 
of the dry air part of the parcel …

A paradox, which constrains many aspects. Plus the need 
not to forget ‘dry air’, if wanting a comprehensive view. 

Paradox: it is the opposite 
for enthalpy (easy budget 
vs. uncertain absolute 
value)!



in fact “similar”  to  HH87,  M93 ou E94, except ... θs  complicated ?

Computations of   s   θs (  (θs )1 )
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3-phase
Betts ?

SPECIFIC MOIST ENTROPIC POTENTIAL TEMPERATURE

Marquet, 2011, 
QJRMS

( )tils qΛ= exp)( 1 θθilvt qqqq ++=



Practical application of the Third Law 
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Entropy diagram (in kJ/K/kg) for N2, O2, H2O and for a 1000 hPa pressure 

The vertical arrow is a symbol for the role of Λ (at T0 )



Computations of   s   θs (  (θs )1 ): Additional remarks
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3-phase
Betts ?

θs is independent of the 
choice of the reference 
values, but only if 
rr=rr(esat(Tr ), pr), a 
situation which excludes 
the 3 phases case. This 
problem disappears with 
(θs )1 but it is displaced to 
the choice of Λ , which 
also depends on the 
reference valuesθ li is the obvious extension of Betts’ θ l, in the spirit of (θs 

)1 

SPECIFIC MOIST ENTROPIC POTENTIAL TEMPERATURE

Marquet, 2011, 
QJRMS

( )tils qΛ= exp)( 1 θθilvt qqqq ++=



Computations of   s   θs ↔  Th
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The 3rd Law …

+ similar computations 

for moist enthalpy  

No need here for a leading term like (θs )1

It is easy to express a ‘relative’ specific moist enthalpy 

( from the thermal part of ‘Moist Static Energy’ (MSE)) 
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Practical application (bis)
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Enthalpy diagrams (in kJ/kg) for N2, O2, H2O and for a 1000 hPa pressure 

The circle indicates the ‘coincidence’ (see later for the consequences)



Computations of   s   θs ↔  Th : Additional remarks
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The 3rd Law …

Forgetting the (partly arbitrary) reference value and adding

the geopotential, one obtains Shm as conservative quantity

 for vertical displacements and phase changes 

There is no direct equivalent 
of the Third Law for the 
enthalpy ‘h’. However a 
formal parallel integration 
from 0 K to atmospheric 
temperatures is possible. This 
is here the meaning of the 
dashed arrow.
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Sc = ‘cloud stew’ => laboratory for conservation rules 

        “clear-air” ≠  “cloud”  (entrain. region)

    Large jumps in   θ l and  qt (entrain. region)

qt 

ql 

l

10 K 6 g/kg

Applications / FIRE-I :  [ θ l  ; qt ; ql ]  RF03B-hom.

Data flights NASA  S. De Roode

10 K 6 g/kg
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Applications / FIRE-I :  [ θ l  ; qt ; ql ]  RF03B-hom.

ql 

(θs )1  constant with z

“clear-air” = “cloud” !  for  (θs )1          

    No jump in       (θs )1  !

(θs )1 qt 
θl
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HH87

E94

M93
( s )1 E
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TC81

L68

GB01

( s )1

l 

And observations tell us about the ‘target’ of mixing

Rv/Rd
1.61

Λ
     5.87     

Lvap/(cpdT)
~9.1

(θs )1 ≈  2/3 - 
1/3 

between θ l & 
θE  

But θs is so 
homogeneou
s that is 
cannot give 
any good 
indication 
about cloud 
amount!
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Transport problems: which fluxes and variables?

Asymmetric (MSE inheritance), no qt=1-qd related 
part

Originally

Practical evolution

In p-type coordinates, the new quantity S’li is the exact counterpart of cpdT+gz for 
the fully dry case. 

Neither Ls counterpart, nor 
even any appearance of ql ??
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Why has MSE a ‘quasi-conservative’ reputation?

Originally

S’l adaptation

So, if  qi=0, MSE’ and Shm differ only by the last term 

But TΥ  = 2362 K  &  Lv(T0)/cpd=2489 K !!!   (while ΛT0=1603 K)

The close match between the two values is a coincidence. It explains why MSE’ (or 
its MSE approximation) is nearly conservative (5% difference), in the ‘warm’ case.

But, as soon as we have ice phase, it collapses (Ls(T0)/cpd=2821 K) => Use 
Shm !

 …and S’li for the 
Betts’ transforms

[ analogy with (θs )1 ]
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May we use M11’s findings in moist turbulence (apart from 
upgrading  Betts’ transforms & better measuring stability)? 
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• The relevant issues are:
• Finding a way to express how nature seems to tend to full 

mixing of θs (i.e. maximising turbulent energy conversion via 
the transport of qt). Hints in Pauluis and Held (2002, Part I)?

• Going around the fact that θs is a very bad tracer of 
cloudiness. 

• Doing both steps while remaining close to the present 
formalism for the computation of the buoyancy flux (the 
development of a formulation for the Brunt-Väisälä- 
Frequency (BVF) is an interesting intermediate step for that). 
See Marquet and Geleyn, 2013, QJRMS.

• Finding a consistent way to introduce that there is a part of 
the heat and moisture transports which is realised through the 
asymmetry between the situations inside and outside the 
clouds.  



• For homogenous (non-saturated and fully-saturated) situations, one can 
compute the squared BVF by noticing that density is function of moist 
entropy ‘s’, total water content ‘qt’ and pressure ‘p’ only.

• Let us suppose that we know a ‘transition parameter’ (‘C’, which can be 
identified to a cloudiness or to a cloud efficiency) and let us define:

• F(C) ensures the transition between the non-saturated case (C=0) where 
moisture acts only through expansion (Rv/R) and the fully-saturated one 
(C=1) where it acts only through latent heat release (Lv(T)/(Cp.T)).

• M(C) cares for the linked change of adiabatic gradient, without any need 
for a second transition variable.

• Remarkably DC does not depend on moisture amounts.
36   

The moist entropic potential temperature θs within its 
related Brunt-Väisälä Frequency expansion (1/2)
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• We compare here the new formulation with the ‘classical’ ones of 
Durran and Klemp (1982) and of Emanuel (1994) by expressing the 
vertical adiabatic lapse rates Γ=-dT/dz .

• In the non-saturated case the correct  solution is Γns=g/cp

• In the case of full-saturation with respect to liquid water we have:

37   

A digression concerning vertical adiabatic lapse rates (1/2) 

 
(MG13)

 
(DK82)

 
(E94)

Without any doubt,  the 
more exact the derivation, 
the simpler the final result!



• But we have a similar loss of simplicity when replacing the complex θs by 
its simple approximation (θs )1:

• Remark: all the relevant computations were performed for reversible 
adiabatic conditions (no precipitation) where we have: 

• In the irreversible case we would have instead as function of T and p:
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A digression concerning vertical adiabatic lapse rates (2/2) 

 
(MG13, θs )

 
(MG13, (θs )1 )

 

 



• Going back to F(C) and M(C), for any atmospheric condition, one gets for the 
squared ‘BVF’ (MG13):

• Interpretation (loosely following PH02):

• The (sometimes neglected) ‘water loading’ second term corresponds to the third 
reason why the simplistic view of Betts’ method is wrong.

‘Classical’ TKE   TPE conversion

 Total water lifting effect (TKEPE)

Λ-scaled differential expansion and latent heat effects (TKE   ?)
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The moist entropic potential temperature θs within its 
related Brunt-Väisälä Frequency expansion (2/2)
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Conclusions
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- They are too various and too interdependent to be listed and ranked.
              
- One just hopes to have made more evident the need and interest of 

treating thermodynamics more carefully and more purposefully in 
future modelling endeavours (see in particular Catry et al., 2007).

- The consequences of the M11 and MG13 papers for treatment of 
moist turbulence are still under investigation.

- The next step would be to consider the potential of application to the 
deep convective situation (closure?), most probably with reference to 
the ideas of PH02.   

- There are more advanced consequences of the ‘specific moist’ view 
of atmospheric thermodynamics in two other areas (i) exergy (or, 
better said, available enthalpy) & (ii) moist potential vorticity with a 
state variable (θs ) conserved in Lagrangian advection and in 
mixing.



Moist PV with θv, θs, θe (900, 925, 950 hPa average)

PV of θv (nearly dry, 
all positive, density 
linked and hence 

invertible by 
definition)

PV of θs (specific 
moist, negative only in 
key zones and perhaps 

approximately 
invertible)

PV of θe (‘classically’ 
non-specific moist, 

negative in wide zones 
and thus most 
probably non-

invertible)

Rv/R
d
1.61

Λ
5.87 

Lvap/(cpdT)
~9.1



Scaled exergy vs. entropy (reference temperature 300 K; 
units in kJ/kg equivalent to K) for various field experiments

Based on specific moist enthalpy Based on moist static energy

The question marks on the right diagram indicate where the ‘MSE’ 
profiles seem more questionable than those of the ‘h’ solution 


