

Grand Limited Area Model Ensemble Prediction System

GLAMEPS and HarmonEPS: LAM ensemble prediction systems under development

GLAMEPS is a common project for operational EPS in the shortrange in the HIRLAM and ALADIN SRNWP consortia

> Inger-Lise Frogner on behalf of the whole GLAMEPS team and HarmonEPS team

> > **Iceland April 2013**

Pre-operational GLAMEPS_v1 for the "synoptic" scales:

54 ensemble members:

- EC DET (1) +
- HirEPS_S (12+1) +
- HirEPS_K (12+1) +
- AladEPS (13) +
- EC EPS (14) = 54

Forecast range: 54h

• 06 and 18 UTC (EC 00 and 12 UTC)

~11 km resolution Aladin: 629x529, 11.8 km, L37 Hirlam: 646x492, 0.10° (11,1 km), L40

Runs as Time-Critical Facility at ECMWF

Black frame: Aladin domain Red domain: Hirlam domain and common output domain

Aladin component

- 6 h CANARI cycle (conventional data only)
- 3 d fields updated at 00h and 12h from EPS
- All Alaro members separately

Hirlam component

- Control members have 3d-Var
- Other members only surface assimilation cycle
- Two choices for the cloud physics parameterizarions \rightarrow
 - HirEPS_S (STRACO)
 - HirEPS_K (Kain-Fritsch/Rasch-Kristjansson)
- Stochastic physics (tendency perturbations) (since 6 February 2013)
- Perturbed surface observations (since 29 January 2013)

GLAMEPS performance

MSLP

Spread/Skill MSLP Dec 2012 – March 2013

Ensemble skill vs. spread Mean sea level pressure

EPS lead time (h)

CRPSS MSLP 20120922-20130331

T2m

CRPSS T2m 20120922-20130331

Sep 24 Oct 17 Nov 11 Dec 05 Dec 29 Jan 21 Feb 13 Mar 08

ROC THR 0 +24h

Value THR 0 +24h

10 m wind speed

CRPSS 10m wind speed 20120922-20130331

Sep 24 Oct 17 Nov 11 Dec 05 Dec 29 Jan 21 Feb 13 Mar 08

ROC THR 10 +24h

Value THR 5 +24h

12 h accumulated precipitation

GLAMEPS EC EPS (ref)

ROC THR 10 +24h

Value THR 0.1 +12h

R&D for further improvements include:

- Increase the number of Aladin ensemble members at expense of the EC EPS members
- GLAMEPS 4 times per day (lagged ensembles). Increased resolution (~8 km)
- Include ETKF or EDA in hybrid mode with 3DVar see the presentation from Åke on ETKF
- Include high-resolution, short-range, singular vectors for CAPE see the presentation from Sibbo
- Cooperation with LAEF
- Verification (HARP)

- Statistical post-processing for bias- and variance-corrections and multi-model combination (ELR)

Example of BSS for calibrated GLAMEPS 6h precipitation, +42h

Brier skill score

threshold (mm)

New products at glameps.org

GLAMEPS-o-GRAM Ukkel Forecast date: Thursday 11 April 2013, 06h UTC

3h Precipitation

GLAMEPS PROD (GI.PROD.m54 54/54 members) Upscaled Prob 3h Accumulated Rainfall over 4mm (Legend) Analysis: 2013/04/05 06UTC T+012 VT: 2013/04/05 18UTC

A second output stream from GLAMEPS

Paramater	GRIB number	Level Type	Level	Unit
Surface Pressure	1	105	0	Ра
Height Pressure Level	6	100	1000	m^2/s^2
Height Pressure Level	6	100	700	m^2/s^2
Temperature Pressure Level	11	100	1000	К
Temperature Pressure Level	11	100	700	К
U-wind Pressure Level	33	100	1000	m/s
V-wind Pressure Level	34	100	1000	m/s
U-wind Pressure Level	33	100	700	m/s
V-wind Pressure Level	34	100	700	m/s
Relative Humidity Pressure Level	52	100	1000	01
Relative Humidity Pressure Level	52	100	925	01
Relative Humidity Pressure Level	52	100	850	01
Relative Humidity Pressure Level	52	100	700	01
Relative Humidity Pressure Level	52	100	500	01
Large Scale Precipitation	62	105	0	kg/m²
Convecitve Scale Precipitation	63	105	0	kg/m²
Low Cloud Cover	73	105	0	01
Medium Cloud Cover	74	105	0	01
High Cloud Cover	75	105	0	01

HarmonEPS

- Intention is to provide to the member weather services a prototype probabilistic forecast system on nonhydrostatic, convectionpermitting scales
 - Not pan-European
- To enable reliable predictions of probabilities for high-impact weather events which are confined in space and time by:
 - Meso-scale dynamical structures
 - Orographic and other finescaled surface forcing

HarmonEPS: set-up first experiments

- A convection-permitting EPS, ~2.5 km, sub-European and Sochi-area
- 2.5 km resolution
- +36 h lead time.
- Full DA and 6 h cycling for the control,
- HarmonEPS to be run every 12 h
- Surface assimilation included for every member.
- 20 members, 10 members with AROME and 10 with ALARO . -> continue the multi-model approach
- Step-wise develop
 - RUC with DA, and
 - finally hybrid DA and high-resolution observations
 - Size of area needed? How many members? Grid resolution?

HarmonEPS: Uncertainty strategies

Initial condition perturbations:

- Perturbations from EC EPS
- Humidity perturbations: humidity in SVs, use of MSG cloud mask
- Later ETKF/LETKF/EDA

Lateral boundary perturbations:

- Test EPS (T639) vs EPS (T1279)
- Difference between deterministic runs / SLAF

Model error

- Multi-model
- SPPT
- physics parameter perturbations
- Introduce "stochastic physics" on process level, rather than
 multiplying the total physical tendencies
- Use Cellular Automata (CA)

HIRLAM contribution to FROST

Meeting in St. Petersburg last week.

2011:

•GLAMEPS semi operational (FDP). Technical work in setting up Harmonie to run in ensemble mode. First test with HarmonEPS for the area of Sochi run successfully (RDP)

2012:

Providing GLAMEPS results routinely (FDP) – Delivery of GLAMEPS to FROST from September 2012.
Run HarmonEPS experiments for the area of Sochi.

•Calibration of EPS forecasts (RDP).

2013:

•Run HarmonEPS for the area of Sochi and provide output

Calibrated forecasts for venues

Thank you