
Scalability of BATOR :

A problem of strong scalability ?

Ryad El Khatib (CNRM/GMAP)

Aladin Workshop / Hirlam All Staff Meeting Norrköping, 05-08 April 2011

PlanPlan

INTRODUCTIONINTRODUCTION
 Presentation of BATOR softwarePresentation of BATOR software
 Characteristics of BATOR compared to AROMECharacteristics of BATOR compared to AROME

STUDIES
 Improvements and limits of the scalability of today
 Software performance
 Other parallelisations algorithms

CONCLUSIONS
 Recommendations for Bator and softwares in general
 Perspectives for Bator in particular

INTRODUCTION : INTRODUCTION : présentation of BATORprésentation of BATOR

 Application to transform the collected observations over the
planet into a database of the « ODB » format, suiatable for
ARPEGE, ALADIN, AROME

 First task on the critical path of an assimilation suite 3DVar
(AROME) or 4DVar (ARPEGE)

 Mechanism : several executions of the applications in order to
transform sets of observations files delivered in different formats
(BUFR mainly) and different sizes

« Anatomy » of BATOR as used for AROME (3DVAr)« Anatomy » of BATOR as used for AROME (3DVAr)

Kind of observations or instrument Number of files Format Size (Mb)

Surface 1 OBSOUL 1

Wind profilers + GPS 2 OBSOUL 1

Conventional 1 OBSOUL 7

SEVIRI 1 GRIB 18

HIRS 1 BUFR 2

AMSUA 1 BUFR 1

AMSUB 1 BUFR 4

SSMI 1 BUFR 3

IASI 1 BUFR 13

Geowind 1 BUFR 2

ERS + ASCAT 2 BUFR 1

AIRS 1 BUFR 0

RADAR 24 BUFR 200

Characteristics of BATORCharacteristics of BATOR

BATOR vs AROME BATOR (without ODB) AROME forecast (3h)

Number of lines of code ≈ 7 000 ≈ 1 600 000

MPI parallelisation Oui mais inefficace Oui

Open-MP parallélisation Non Oui

CPUs used in operations 1 16 (SX9)

Elapse time ≈ 500 s. ≈ 500 s.

Memory per CPU 15 Go 11.5 Go (SX9)

Static memory allocated ≈ 600 Mo ≈ 400 Mo

Impact of the hardware
architecture

NEC SX9
Vector machine

Intel Xeon
Scalar machine

Elapse time ≈ 500 s. ≈ 180 s.

Load balancing of the BATOR tasks

=> In such conditions, the scalability is near to zero

0

20

40

60

80

100

120

140

BATOR / AROME Elapse time (s.)
Intel Xeon + Intel compiler

conv
geow
iasi
prof
radar
scat
sev
ssmis
surf
tovsa
tovsb
tovsh
airs 0

2000

4000

6000

8000

10000

12000

14000

BATOR / AROME Memory usage Mb)
Intel Xeon + Intel compiler

conv
geow
iasi
prof
radar
scat
sev
ssmis
surf
tovsa
tovsb
tovsh
airs

The task devoted to the 24 radars files is dramatically proeminent

07
00

5
07

02
7

07
08

3
07

10
8

07
14

5
07

16
8

07
18

0
07

22
3

07
25

5
07

27
4

07
29

1
07

33
6

07
38

1
07

43
6

07
47

1

07
51

0
07

56
9

07
60

6
07

62
9

07
63

7
07

64
5

07
67

1
07

74
5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is
su

rf
to

vs
a

to
vs

b
to

vs
h

ai
rs

0

2

4

6

8

10

12

BATOR / AROME temps d'exécution par tâche (s.) Intel Xeon + Intel compiler

07
00

5

07
02

7

07
08

3

07
10

8

07
14

5

07
16

8

07
18

0

07
22

3

07
25

5

07
27

4

07
29

1

07
33

6

07
38

1

07
43

6

07
47

1

07
51

0

07
56

9

07
60

6

07
62

9

07
63

7

07
64

5

07
67

1

07
74

5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is

su
rf

to
vs

a

to
vs

b

to
vs

h

ai
rs

0

500

1000

1500

2000

2500
BATOR / AROME - Coût mémoire (Mo)

Intel Xeon + Intel compiler

=> Will a external dynamic load balancing
be enough ?

What if we maximize the number of tasks ?
(1 task per file)

07
00

5
07

02
7

07
08

3
07

10
8

07
14

5
07

16
8

07
18

0
07

22
3

07
25

5
07

27
4

07
29

1
07

33
6

07
38

1
07

43
6

07
47

1

07
51

0
07

56
9

07
60

6
07

62
9

07
63

7
07

64
5

07
67

1
07

74
5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is
su

rf
to

vs
a

to
vs

b
to

vs
h

ai
rs

0

2

4

6

8

10

12

BATOR / AROME temps d'exécution par tâche (s.) Intel Xeon + Intel compiler

07
00

5

07
02

7

07
08

3

07
10

8

07
14

5

07
16

8

07
18

0

07
22

3

07
25

5

07
27

4

07
29

1

07
33

6

07
38

1

07
43

6

07
47

1

07
51

0

07
56

9

07
60

6

07
62

9

07
63

7

07
64

5

07
67

1

07
74

5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is

su
rf

to
vs

a

to
vs

b

to
vs

h

ai
rs

0

500

1000

1500

2000

2500
BATOR / AROME - Coût mémoire (Mo)

Intel Xeon + Intel compiler

Limits of the scalability with a dynamic load balancing

 Limited because the number of
observations files is limited
('36' wall)

 Scalability loss because of
residual load imbalance
(we can't run faster than the
slowest task : red line)

And also :
 Relatively high memory cost

per task
 Memory-anti-scalable

parallelisation scheme

Practically : beyond16 procesors, the
ressources at disposal is critical

1 4 8 12 16 20 24 28 32 36
1

6

11

16

21

26

31

36

Scalability

ideal
maximal
mesured

Possible number of processors

S
pe

ed
up

How to cross this scalability barrier ?

Jump over the obstacle ?

 Increase the number of observations files ??
– In 4DVar : slice the files into shorter time slots
– Cut the files per geographical sub-area ?
– Define a better-adapted file format ?

– However, handling many small files may not be the best solution

1 4 8 12 16
0%

20%

40%

60%

80%

100%

System time vs / Real time

system
real

Number of tasks

How to cross this scalability barrier ?

 Avg-% Avg.time # of calls : routine
 42.65% 9.697 13312 : BUEXS3
 26.40% 6.002 7 : Bator_lbufr_radar
 7.89% 1.795 1 : BATOR
 4.87% 1.107 1 : BATOR_ELIM

=> An obvious efficiency issue in decoding radar BUFR files
=> Subroutine Bator_lbufr_radar to be further examined

Turn around the obstacle, looking for better performance ?

 Efficiency may contribute to improve the Scalability
– Are the files read/written efficiently ?
– Does the algorithm fit parallel machines ?
– Is the code performant ?

How to cross this scalability barrier ?

Turn around the obstacle
Using other directions in parallelism ?

 BUFR decoding library uses global variables
– => To use Open-MP one should modify the software

 Bator algorithm is intrinsincally sequential
– => To use Open-MP one should revisit the algorithm

 Bator contains a lot of loops left by GOTO instructions
– =>Difficult to analyse the code performance and implement Open-MP.

The code has to be modified.

 MPI parallelisation in dans Bator : it exists but :
– Parallelism based on the distribution of a set of input observations files
– => No treatment of memory load balancing
– => No treatment of CPU load balancing
– => finally less efficient than the external dynamic parallelisation

Another unexpected issue

The number of observations pools should be a multiple of the
number of MPI tasks in the subsequent applications

(Screening, Minimization)

 ODB_IO_METHOD=1
– 1 file per table and per pool
– => would lead to much small files on many-processors machine. Is the

file system ready to support this ?

 ODB_IO_METHOD=4
– Less files of fixed size
– => Requires (much) more memory. May easily break the memory limit of

a node with Bator on a scalar machine

 Alternative # 1 : ODB_IO_METHOD=1 + tool « Odb1to4 »
 Alternative # 2 : ODB_IO_METHOD=4 + « reshuffling » (needs a

specific ODB recompilation)

Conclusions

 Bator exhibits strong scalabilitiy issues than, could be overcome :
– Better I/O conditionning (format, number of files)
– Parallelisation methods (MPI, threads) using algorithms adapted to the

problem
– Playing with ODB tools

 The search for scalability should not mask the performance issue

 Softwares should evolve permanently according to its context of
execution, not its own being :
– « High Performance Computation » => batch processing (« vectorization »)
– Evolution of programing languages, hardware architectures
– Software context (3DVar, 4DVar for Bator, OOPS later on)

Perspectives for Bator

 Scalability and performance issues for Bator/AROME could be
solved for short or mid term :
– Thanks to a sufficient external parallelisation
– Because the enhancement of performance (Bufrdc) seems

feasible

 Bator/AROME-3DVar solution is extensible to 4DVar

 Ongoing : Fusion of ECMWF Bufr2odb with Bator
– Full parallelisation support from Bufr2Odb
– Get the software out of the critical path thanks to an earlier

upstream execution
– Object-oriented context for 3DVar/4DVar ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

