
Some computational aspects of HARMONIE

Ulf Andræ, SMHI
Trygve Aspelien, Ole Vignes, Dag Bjørge met.no

Torgny Faxén, NSC
Jacob Weissman Poulsen DMI

ALADIN 23nd WS - HIRLAM ASM
Reykjavik

15-19th April 2013

Content

- Benchmark activities

- Diagnosing the IO performance of cy38

- Portability

- Surface assimilation lesson learned

Benchmarking

 Several HIRLAM countries are in the process of
upgrading their HPC.

 A benchmarking package have been created
– harmonie-38h1.alpha.2, no netcdf dep,

wrgp2fa.F90 update, OpenMP fixes,
– Simple sample scripts
– Required background data
– 1h boundaries up to 6h for several domains

with 2-5km and 65 vertical levels
XS: 50x50, M:384x400, L:750x960,

XL:1200x1200, XXL:1600x1600
 https://hirlam.org/trac/wiki/HarmonieSystemDocument

ation/HarmonieBenchMark

Benchmarking, some properties

 Runs with EDKF (EDMFM had problems)
 Tested for IBM, gfortran, intel
 MPI reproducible, different decompositions
 OpenMP reproducbile for different number of

threads
 Reproducibility issues with MKL libraries (intel)

but good performance and reproducibility with
other blas/lapack libraries.

 Forecast model only. Assimilation still considered
second of importance (or to complicated to deal
with)

The typical cost of a forecast

 SURFEX lfi output

 FA output

 BD input

 Computations

 Radiation timestep

Scalability on a 1200x1200x65 domain
Sandybridge 2.2GHz 16 core nodes
Mellanox infinband

IO step only

IO FA + LFI

IO FA+SURFEX as FA

IO FA + SURFEX as FA + IO SERVER

A more careful look on the IO steps
(without IO server)

Runs done on Lustre file system,
maximum BW for single file
120 MB/sec.

“Excluding compute” means
subtracting the time for an
ordinary time step or radiation
time step.

NSTROUT important to maximize.

NSTRIN has rather small effect on
execution time and can vary a
lot depending on what else is
going on and where file
resides. Factor of three slower
when NSTRIN=1 → NSTRIN=8
observed in one case!

1 8 16 128 256
0

5

10

15

20

25

30

35

40

45

50

55

60

Arome cy38 execution time for one "I/O step", 16 nodes, 256 ranks
excluding compute time.

Area: 750x960x65. 2.5km. Without IO-server.

read boundary data file

disk I/O write

history file write (except
disk I/O)

NSTRIN, NSTROUT

E
xe

cu
tio

n
 ti

m
e

 in
 s

e
co

n
d

s

Courtesy Torgny Faxen NSC

IO performance with IO server.

IO-server works fine. Time to
concatenate output files not
included though. Maybe reading
of output data can be done in
parallel instead?

With IO-server it seems like reading
of boundary data is now the
largest time consuming routine.

How to improve reading of boundary
files?

Asynchronously through the IO-
server should be possible?

Modify the actual READ?

2 4 8 16
0

5

10

15

20

25

30

35

40

45

50

55

60

Arome cy38 execution time for one "I/O step", 16 nodes, 256 ranks,
excluding compute time. NSTROUT=NPROC.

Area: 750x960x65. 2.5km. With IO-server.

read boundary data file,
NSTRIN=16

history file write, I/O-
server.
NSTROUT=NPROC.

Number of IO-serverprocesses

E
xe

cu
tio

n
 ti

m
e

 in
 s

e
co

n
d

s

Courtesy Torgny Faxen NSC

Better performing by prestaging the input file
(just an example)

Default Prestage

1 4 8 16
0

5

10

15

20

25

30

35

40

45

50

55

60

Arome cy38 execution time for one "I/O step", 16 nodes, 256 ranks, excluding compute time.
Prestaged boundarydata input file. NSTROUT=NPROC.

Area: 750x960x65. 2.5km. With IO-server.

read boundary data
file, prestaged.
NSTRIN=1

history file write, I/O-
server.
NSTROUT=NPROC.

NUmber of IO-serverprocesses

E
xe

cu
tio

n
 ti

m
e

 in
 s

e
co

n
d

s

2 4 8 16
0

5

10

15

20

25

30

35

40

45

50

55

60

Arome cy38 execution time for one "I/O step", 16 nodes, 256 ranks,
excluding compute time. NSTROUT=NPROC.

Area: 750x960x65. 2.5km. With IO-server.

read boundary data file,
NSTRIN=16

history file write, I/O-
server.
NSTROUT=NPROC.

Number of IO-serverprocesses

E
xe

cu
tio

n
 ti

m
e

 in
 s

e
co

n
d

s

So we believe we have a reasonably well
working benchmark package!

Well....

Testing the portability (cy37h1)

mpi 1 thread 2 threads 12 threads

pathscale X X X

intel X X X

cray X X F

gfortran X X F

pgi F

MPI Default ieee stack bound

pathsca
le

X X F F

gfortran X X X F

cray X X X F

intel X F F F

pgi F

Mixed MPI
OpenMP

Pure MPI with
different
compiler
options

Compilation warnings and interface problems
some examples
- Fortran pointer variable ”FOO” is being used before being pointer

assigned or allocated (2)

- Variable ”FOO” is used before it is defined (95)

- Dummy argument ”FOO” has the INTENT(OUT) attribute, but is
never assigned a value or used as an actual argument (73)

- “FOO” is used but never set (31)

- Argument type differ from declaration (49)

 (some of these were sent as corrections to cy39t1.)

Some warnings are more harmful than others

It's natural that “real” errors are dealt with first, but how can
be do better here? (back to the cycling strategy)

How to speedup your code

 Nothing beats doing less

 If you have to do it, do it better

 Share your work
– OpenMP, loop, single node

parallelisation
– MPI, distributed computations

Fighting with the surface assimilation

 On the way to 37h1.2 we modifided OI_MAIN and introduced
SODA in parallel.

– Increased the cost ~10 times compared to 37h1.1
OI main for large domains

– The bad guys were patch averaging (surfex
setup) and horisontal extrapolation.

– Could decrease the cost by doing less
extrapolations

 In cy38h1 we have the option to run OI main inline CANARI.
OI main comes for free!

– HARMONIE OI main/SODA different from OI_MAIN
inside CANARI

– Extrapolations not reproducible in the MPI
environment

Back to OI_main

 Share the work, add OpenMP
directives to the painful part
in the extrapolation.

 Scaling example for the
MetCoOp domain => Back to
reasonable numbers

 All tricks tried

Doing less

Share with OpenMP/MPI

Doing it right: Revisit the
reason for extrapolations!

1 4 16 32
0

50

100

150

200

250

300

350

400

OI_MAIN OpenMP scaling

Threads

S
e

co
n

d
s

Courtesy Ole Vignes met.no

Conclusions

- We have a benchmark package for the forecast model in cy38h1

- The IO server works well for output. Will be optional in
HARMONIE together with SURFEX FA/LFI output. More work
needed for input

- Several versions of surface assimilation exists with different
computational and meteorological properties. Convergence
discussion started!

- Our system is sem-implicit, semi-lagrangian, semi-portable and
semi-fortran standard compliant

Thanks again for your attention
Questions?

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21

