HIRLAM 4DEnsVar – discussion and first results

Nils Gustafsson and Jelena Bojarova

4DEnsVar: Issues

- Avoid use of TL and AD models (difficult to scale on thousands of processors) => Cheaper than 4DVar
- Utilize ensemble perturbations based on the nonlinear model.
- Ensemle generation: Perturbed observations? ETKF re-scaling? Stochastic physics?
- Need for many EPS members (~100?); can lagged ensembles be used?
- Easy to implement with existing 4DVar Hybrid
- 4DEnsVar similar to 4D-En-KF in its simplest form with possibilities to treat non-linearities better (outer loops)

Incremental 4DVar

Figure 3: Statistical, incremental, 4D-Var approximates entire PDF by a Gaussian. The 4D analysis increment is a trajectory of the PF model, optionally augmented by a model error correction term.

From Lorenc (2011)

4DEnsVar

Figure 6: A schematic diagram of 4D-En-Var, for comparison with figure 3. The 4D analysis is a localised linear combination of model trajectories – it is not itself a model trajectory.

From Lorenc (2011)

4DEnsVar - literature and status

- Liu et al. 2008, MWR
- Buener et al. 2010, MWR
- UK MetOffice: Bowler, strategy paper; Lorenc, design paper;
- To replace 4DVar in Canada in 2013;
 4DEnsVar as good as 4DVar in trial runs
- **Very first** results at Met.Office: 4DVar better than 4DEnsVar
- Applied at SMHI for Sea ice model (Axell)

Lorenc (2003) augmentation of the control vector space:

spectral space

$$\begin{split} J(\delta x_{3D-Var},\alpha) &= \beta_{3D-Var}J_{3D-Var}(\delta x_{3D-Var}) \\ &+ \beta_{ens}J_{ens}(\alpha) + J_o \end{split}$$

•Spatial mean of
$$\alpha_k = 0$$
;

- •Spatial variance of α_k
- = 1/K is constant and controls amplitude;
- $\begin{array}{ll} \bullet \mbox{Horizontal} & \mbox{auto-} \\ \mbox{correlation} & \mbox{controls} \\ \mbox{smoothness of } \alpha_{_k} \mbox{ fields} \\ \end{array}$

$$\frac{1}{\beta_{3D-Var}} + \frac{1}{\beta_{ens}} = 1 \qquad J_{ens} = \frac{1}{2} \alpha^T \mathbf{A}^{-1} \alpha$$

The same $lpha_k$ fields for vertical levels and all types of model state components

grid-point space

$$\delta x = \delta x_{3D-Var} + \sum_{k=1}^{K} (\alpha_k \circ \delta x_k^{ens})$$

 $\begin{array}{lll} Empirical & matrix & A\\ contains & spectral\\ density of the horizontal\\ auto-correlation of α_k\\ fields & \end{array}$

Spatial averaging is applied on vorticity, divergence, temperature, specific humidity and log of surface pressure in order to preserve a geostophic balance.

Different HIRLAM Hybrid variational ensemble schemes

Assimilation window $t_0 \le t \le t_1$ $t_* = (t_0 + t_1)/2$

$$d_t = y_t - M(t_0, t)(x(t_0))$$

M Non-linear model

$$J_o = \sum (d_t - \delta x_t)^T R^{-1} (d_t - \delta x_t)$$

3D-Var (FGAT) :
$$\delta x_{t_*} = \delta x_{t_*}^B$$

3D-Var FGAT Hybrid:

$$\delta x_{t_*} = \delta x_{t_*}^B + \sum_{k=1}^K \alpha_k \circ \delta x_k^{EPS}(t_*)$$

4D-Var:

$$\delta x_t = \mathbf{M}(t_0, t) \delta x_{t_0}^B$$

M Tangent-linear model

4D-Var Hybrid:

$$\delta x_t = \mathbf{M}(t_0, t) \left(\delta x_{t_0}^B + \sum_{k=1}^K \alpha_k \circ \delta x_k^{EPS}(t_0) \right)$$

4DEnsVar (strong constraint):

$$\delta x_t = \sum_{k=1}^K \alpha_k \circ \delta x_k^{EPS}(t) + \delta x_{t_*}^B \text{ (optional term)}$$

With time-variable localization α_k we will have Weak constraint 4DEnsVar!

ETKF rescaling scheme: sequential low-rank estimation of covariance evolution

Initial perturbations : ETKF rescaling scheme

Examples of ensemble spread (standard deviation) for temperature at model level 28 (~800 hPa)

Figure 12. Temperature level 28 spread (rms), 3dvar (top), 4dvar(bottom), before etkf re-scaling (left), after etkf re-scaling (right), 22

Before ETKF re-scaling

After ETKF re-scaling

Which ensemble generation technique is better?

ETKF or EDA (perturbed observations)

3DVAR-ETKF outperforms both **3DVAR** and **3DVAR_EDA**

Dynamically consistent structures are important

EDA or ETKF perturbations – verification of upper air profiles

118 stations Selection: ALL
Wind speed Period: 20080119-20080213
Statistics at 00 UTC At {00,12} + 12 24

119 stations Selection: ALL Relative Humidity Period: 20080119-20080213 Statistics at 00 UTC At {00,12} + 12 24

---- 3**D**-Var

---- 3D-Var EDA hybrid

---- 3D-Var ETKF hybrid

EnsDA: analysis at 22 Jan 2008 12 UTC & mbr005

ETKF: analysis at 22 Jan 2008 12 UTC & mbr005

Spectra in ensemble space of different ensemble perturbations (22 January 2008 06UTC +06h)

Experiments over 17 January – 29 February 2008

4dvar_ref1: 4D-Var, 2 outer loops (6 h window, 20 iter. at 66 km and 40 iter. at 44 km incr. resol.), simple TL physics (vertical diffusion only), J_c DFI

4dvar_hybrid1: As 4dvar_ref1 with hybrid ensemble constraint, 20 members, ETKF perturb., 75% static and 25% ensemble variance, ens. perturbations inflated by a factor 4 in hybrid.

4DEnsVar: 6 h window, 1 outer loop (60 iter. at 33 km incr. resol.). 50% static and 50% ens. variance, no ens. perturb. inflation, 3D-Var constraint in the middle of the window (<=> FGAT).

Model grid res. 11 km 40 levels 20 members

Verification of relative humidity profiles against EWGLAM radiosonde stations; average over +12h, +24h, +36h and +48h

----- 4D-Var, ----- 4D-Var Hybrid, -----4DEnsVar

41 stations Selection: EMGLAM
Relative Humidity Period: 20080117-20080228
Statistics at 12 UTC At {00,12} + 12 24 36 48

Comments:

- 4DEnsVar outperforms 4D-Var and 4D-Var hybrid; this is probably due to the poor HIRLAM 4D-Var moist physics
- 4D-Var hybrid slightly better than 4D-Var

Verification of wind speed profiles against EWGLAM radiosonde stations; average over +12h, +24h, +36h and +48h ----- 4D-Var, ----- 4D-Var Hybrid, -----4DEnsVar

41 stations Selection: EMGLAM
Wind speed Period: 20080117-20080228
Statistics at 12 UTC At {00,12} + 12 24 36 48

Comment: 4DEnsVar outperforms 4D-Var and 4D-Var hybrid in the troposphere

Verification of temperature profiles against EWGLAM radiosonde stations; average over +12h, +24h, +36h and +48h ----- 4D-Var, ----- 4D-Var Hybrid, -----4DEnsVar

41 stations Selection: EMGLAM
Temperature Period: 20080117-20080228
Statistics at 12 UTC At {00,12} + 12 24 36 48

Comment: 4DEnsVar slightly better than 4D-Var and 4D-Var hybrid in the mid troposphere

Verification of surface pressure forecasts against Scandinavian SYNOP stations:---- 4D-Var, --- 4D-Var Hybrid, ---4DEnsVar

Selection: Scandinavia using 312 stations Period: 20080117-20080228 Surface pressure Hours: {00,06,12,18} 3 50000 STDV 4dvar_ref1 STDV 4dvar_hybrid1 STDV 4DEnsVar 45000 BIAS 4dvar_ref1 2.5 BIAS 4dvar_hybrid1 BIAS 4DEpsVar 40000 2 35000 1.5 hPa 30000 1 25000 0.5 20000 15000 -0.5 10000 5 10 15 25 30 50 20 35 40 45 Forecast length

Comments: - 4D-Var and 4D-Var Hybrid better than 4DEnsVar at very short range. Overfit of hourly observations in 4D-Var?? - 4DEnsVar better at +48 h (3D-Var similar, not shown)

Is noise a potential problem for 4DEnsVar (and ETKF re-scaling)?

- Incremental DFI is applied in 3D-Var (FGAT) and 3D-Var (FGAT) Hybrid for the control forecast.
- A weak digital filter constraint is applied in HIRLAM 4D-Var and HIRLAM 4D-Var Hybrid for the control forecast – no explicit initialization is applied.
- Do we need to apply initialization (incremental DFI) after ETKF re-scaling for ensemble members other than the control ?
- Do we need to apply initialization after 4D-EnsVar, which is mixture of 3D-Var FGAT increment and localized ETKF non-linear model perturbations?

Average absolute surface pressure tendecies (hPa/3h) for forecasts starting from the main observation hour 22 February 2008 12UTC:

4D-Var Hybrid ----- 4DEnsVar

Member 0 (Control)

Member 3

- 4D-Var Hybrid Control is essentially noise-free
- 4dEnsVar control has a slightly incresed noise level
- Noise based on 4DEnsVar control increments and ETKF rescaling of ensemble perturbations adds up

Examle of analysis fit to observations over the assimilation time window (22 Feb 2008 12UTC)

	4dvarhyb	4densvar
Window 1 (-3h)	U	
RTM	244 (3390)	309 (3760)
fis	306 (1940)	404 (1938)
Window 2 (-2h)		
RTM	318 (2350)	300 (2635)
fis	184 (1318)	311 (1317)
Window 3 (-1h)		
RTM	141 (710)	98 (735)
fis	190 (1312)	289 (1305)
Window 4 (0h)		
RTM	383 (3685)	344 (3780)
fis	398 (2054)	403 (2059)
Window 5 (+1h)	, ,	, , , , , , , , , , , , , , , , , , ,
RTM	637 (5080)	655 (5520)
fis	250 (1313)	371 (1311)
Window 6 (+2h)		
RTM	360 (3530)	289 (3560)
fis	252 (1277)	438 (1273)

Remarks: Fit to observations over the assimilation time window (22 Feb 2008 12UTC)

- The 4D-Var hybrid surface pressure analysis fits observations much tighter than the 4DEnsVar analysis for all observation windows except in the middle of the assimilation window. This is (probably) a matter of tuning the weight of the 3D-Var FGAT background constraint!
- The 4DEnsVar analysis seems to fit AMSU data better than the 4D-Var Hybrid analysis. Why?

IO and memory are problems!

486 x 378 x 40 gridpoints; 10 km resolution; 30 km increments; 32 processors IBM-ECMWF

- Total time 536 s.
- GRIB input 255 s. (includes reading of 120 ensemble member model states in GRIB)
- GRIB output 90 s.
- CMA input/output 42 s.
- Create low resolution ens. perturbations 54 s.
 (includes reading of 120 models states from distributed direct access files)
- Minimization calculations 80 s.

Issues – short term

- Resolution of increments ? 2 ds, 3 ds, 4 ds and 6 ds have been tested. Improved algorithm för change of resolution?
- Vertical localization (2-3 vertical modes?)
- Contribute to the IFS OOPS framework such that Hybrid, ETKF and 4DEnsVar can be included.
- Need and weight for the climatological B term?
- Outer loops (re-linearization for observation operators)
- Iitialization

Issues – long term

- Can 4DEnsVar be applied successfully with one resolution for the control (e.g. 2.5 km) and a coarser resolution for the ensemble (e.g. 5 km)?
- More efficient IO is needed and possibly also packing of the ensemble perturbations in memory.!
- Weak constraint 4DEnsVar correlation in time for the localization weights?