

The DAsKIT programme: status and plans

Aitmeziane, O., Belghrissi, H., Bogatchev, A., Cengiz, Y., Deckmyn, A., Dehmous, I., Hdidou, F., Khalfaoui, W., Kolonko, M., Monteiro, M., Sahlaoui, Z., Szczęch-Gajewska, M., Tsenova, B. (and ...)

With collaboration of Alena Trojakova, Pierre Brousseau, Roger Randriamampianina, Máté Mile

- > Motivation & Goals
- > Tools & Methodology
- > Progress & Status
- > DA starters KIT
- > Conclusions & Outlook

Motivation & Goals: 2016-2018

2016 Toulouse Strategy Meeting:

Operational configurations		@http://www.umr-cnrm.fr/aladin/IMG/pdf/6_mou.pdf															
con	ngurations	Algeria	Belgium	Bulgaria	Morocco	Poland	Portugal	Tunisia	Turkey	Austria	Croatia	Czech Rep	Hungary	Romania	Slovakia	Slovenia	France
	Algeria	ALADIN 12					ALADIN 12	ALADIN 12			ALADIN 12					ALADIN 12	
	Belgium		ALARO 4														
	Bulgaria			ALADIN 7													
	Morocco	ALADIN 18	ALADIN 18	ALADIN 18	AROME 2.5		ALADIN 10	ALADIN 18	ALADII								
	Poland		ALARO 4	ALARO 4		AROME 2.5				AROME 2.5	ALARO 4	AROME 2.5	AROME 2.5	ALARO 4	AROME 2.5	AROME 2.5	
RUN BY	Portugal						AROME 2.5										
	Tunisia							ALADIN 12									
	Turkey			AROME 2.5					AROME 2.5		ALARO 4.5			ALARO 4.5		ALARO 4.5	
	Austria		ALARO 5							AROME 2.5	AROME 2.5	AROME 2.5	AROME 2.5		AROME 2.5	AROME 2.5	
	Croatia									ALARO B	ALARO 2	ALARO 8	ALARO 8		ALARO 8	ALARO 2	
	Czech Rep		ALARO 4.7	ALARO 4.7		ALARO 4.7				ALARO 4.7							
	Hungary		ALARO 8	ALARO 8		ALARO 8				ALARO 8	ALARO 8	ALARO 8	AROME 2.5	ALARO 8	AROME 2.5	AROME 2.5	
	Romania			ALARO 6.5									ALARO 6.5	ALARO 6.5	ALARO 6.5		
	Slovakia		ALARO 9	ALARO 9		ALARO 9				ALARO 9							
	Slovenia		ALARO 4.4							ALARO 4.4	ALARO 4.4	ALARO 4.4	ALARO 4.4		ALARO 4.4	ALARO 4.4	
	France		AROME 1.3														AROME

horizontal resolution in km

Domain	Cycle	Grid	DA	forecast length/ cycle		
AEMET	38h1.2	2.5 km 65 lev	3DVar + surf ana	48h/4times		
DMI	38h1.2	2 km 65 lev	blending + surf ana	54h/4 times		
FMI	38h1.2	2.5 km 65 lev	3DVAR + Surf ana	54h/8times		
KNMI	36h1.4.bf1	2.5 km 60 lev	3DVAR + Surf ana	48h/8 times		
LHMS	37h1.2	2.5 km 60 lev	blending + Surf ana	54h/4 times		
MetEireann	37h1.1	2.5 km 65 lev	blending + Surf ana	54h/4 times		
MetCoOp	38h1.2	2.5 km 65 lev	3DVAR + Surf ana	66h at 00,06,12,18, 3h at		
VI-Iceland	38h1.2	2.5 km 65 lev	blending + Surf ana	48h/4 times		

SPDA Goal: develop a cross-consortia coordination to set-up a basic 3D-Var data assimilation cycle with a limited set of observations suitable for operational implementation

The goal is thus to provide a Data Assimilation Kit (DAsKIT), which should be flexible and easy to handle, even with low manpower. Target DA solution has to account with short HPC resources and/or particularities of regional observation networks (for instance, not all countries are ECMWF(3 Members: Be, Pt, Tk; 2 Co-operating: Bg, Mo; 3 none: Al, Tu, Pl) /EUMETNET/EUCOS members or cooperating members)

Identification of main steps (suitable for operational, research) -> dynamical task (after Météo-France, LACE, HIRLAM methods)

Available cross-countries DA tools -> dynamical task (after Météo-France, LACE, HIRLAM methods)
Good communication platforms

Joining the pieces together (training, becoming technical acquainted, tuning the system)

ALADIN/ALARO/AROME configurations

Tools & methodology: 2018-2020

Verification

home-made (surf,upperair)/monitor/**HARP**

Global model CPL

LAM time integration

IFS(ECMWF)/ARPEGE

AROME/ALARO/HARM_AROME

Obs acquisition

Obs preprocessing ODB (BATOR) processing

Data
Assimilation
cycling (+QC)

home-made PP/SAPP OI_MAIN/blending/3D-Var/ comb.(OI_MAIN+ 3D-VAR)

Obs monitoring

Data blacklisting

h-made/**obsmon**/obstat/LACE

local/ECMWF/Meteo-France

Diagnostic tools

mandalay/obsmon/odbsql

!!!! and, of course, the workflow for each source code version (scripting system)...

Ecflow/ksh:
OLIVE/HARMONIE/home-made

Progress & status: Milestones

2017

2018

2019

DA WD

GTS BUFR SYNOP processing (BATOR)

DAsKIT KICK-OFF Inquire

Surface DA KIT

REF.: AROME_PT2, CY40_t1_bf07, L46, 2.5km, 12UTC, GTS BUFR SYNOP@M-F

DASKIT & LACE WD

surfDA ref (to be ported and cycled); mandalay/obsmon; HARP; SAPP

DAsKIT (surface) local implementation

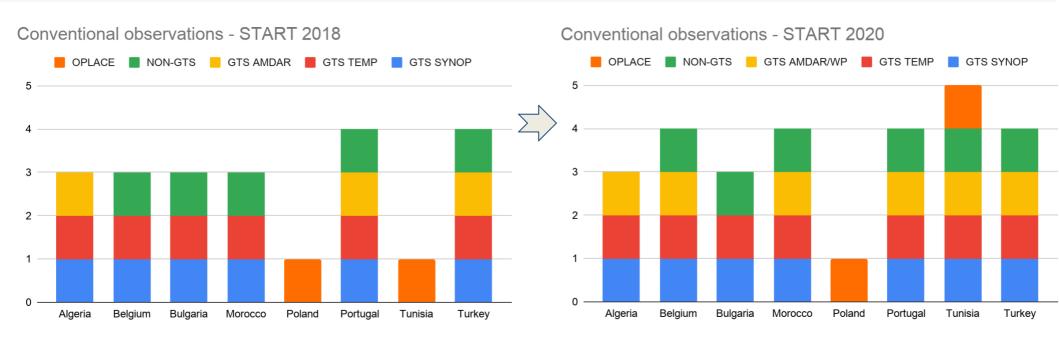
surfDA; mandalay; obsmon; HARP; SAPP

DASKIT & LACE WD

validation of surfDA; GTS BUFR AMDAR processing LACE combined 3D-Var sample

DAsKIT (combined)

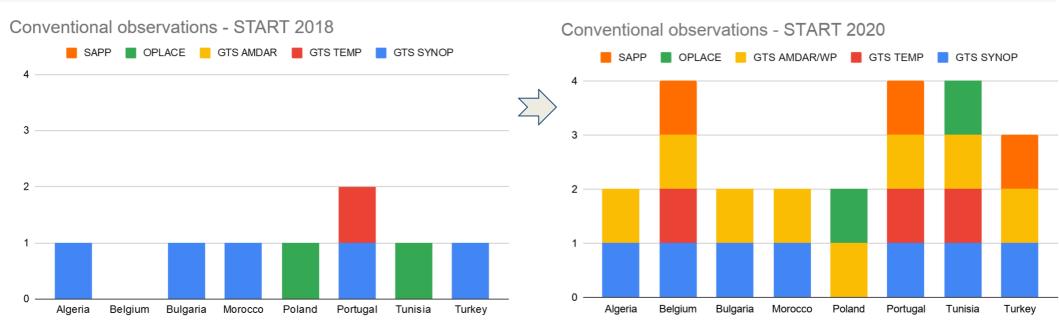
BATOR CY43 (SYNOP, TEMP, AMDAR); validation of surfDA; porting of 3D-Var; building KIT



Progress & status: Data Acquisition

There was a progress on Data Acquisition in the past 2 years

- > 8/8 countries have access to GTS SYNOP, TEMP (Poland receives OPLACE data)
- > 6/8 countries have access to GTS AMDAR (Poland, Tunisia receive OPLACE data)
- > 5/8 countries have access to non-GTS (local) SYNOP data
- > 1/8 countries have access to non-GTS (local) Wind Profilers (Tunisia)



Progress & status: Data pre-Processing

There was a progress on Data pre-Processing in the past 2 years

- > 8/8 the countries have some know-how to handle SYNOP, AMDAR BUFR duplications, due to corrections and amends, and template filtering (an AMDAR action with demo data was used for training, in case of Bulgaria, Poland and Tunisia)
- > 2/8 have now general tools (Belgium, Bulgaria) to pre-process data
- > 2/8 still rely on OPLACE pre-Processing

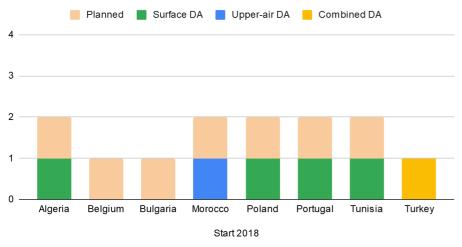
Simultaneously,

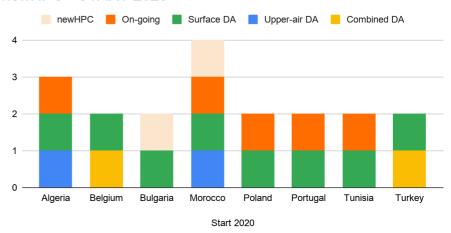
> 3/8 countries have on-going efforts to implement SAPP (Scalable Acquisition and Pre-Processing, ECMWF)

Progress & status: ODB(BATOR) pre-Processing

There was a progress with BATOR implementation in the past 2 years

- > 6/8 the countries are now using the same version of BATOR (CY43T2_bg10)
- > skills in the countries have improved and
- > more countries are now able pre-processing the 3 types of conventional obs: SYNOP, TEMP, E-AMDAR
- > in particular all the countries are now able to pr-process SYNOP data (an action on GTS BUFR SYNOP was done)



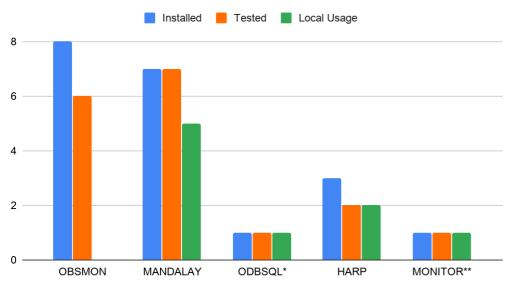


Progress & status: Local DA cycling

Combined DA, Upper-air DA, Surface DA, On-going and newHPC - START 2020

There was a progress on local DA cycling implementations in the past 2 years

- > 8/8 countries are able to cycle a surface DA system (green bars)
- > 2/8 countries are able to cycle **LOCALLY** a combined OI_MAIN+3D-Var DA system (yellow bars)
- > 2/8 have fronsen their activity due to lack of computing resources



Progress & status: Data Monitoring, Diagnostic, Verification

* no investment was done in DAsKIT because not all the countries are associated to ECMWF
** no enough information

There was a progress in local "accessories" implementation in the past 2 years

- > 8/8 countries locally implemented OBSMON but are not using it in-doors yet
- > 7/8 countries locally implemented MANDALAY and are using it regularly
- > 1/8 country is successfully using ODBSQL (ECMWF)
- > 3/8 countries have locally installed HARP
- > 1/8 country is successfully using MONITOR

DA starters KIT (DAsKIT)

Present **DA starters KIT = Surface DA**: Giard & Bazile, 2000

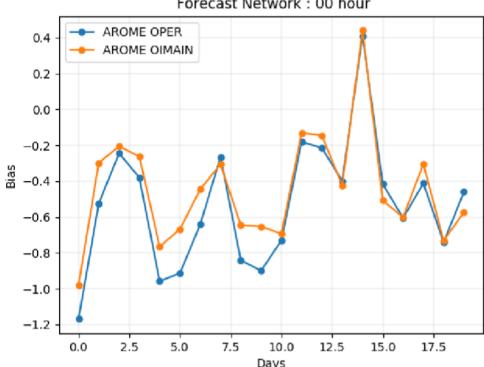
GTS BUFR SYNOP (diagnostics for) homemade PP ODB(BATOR) processing (blacklist)

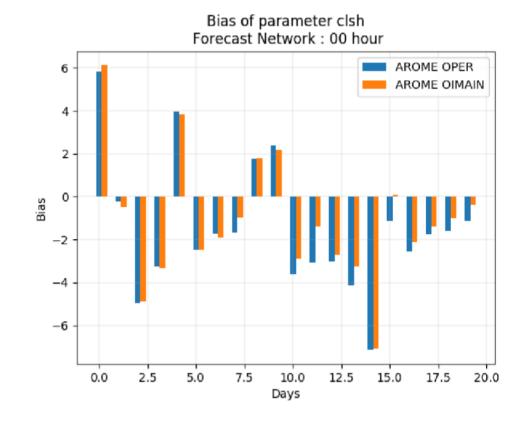
ADDSURF CPL_TS BLENDSUR(SST)

CANARI/OI_MAIN (SURFEX)

AROME CY40T1_bf07 (AROME CY43T2_bf10) Ksh scripts

Planned: to combine it with 3D-VAR (CY43T2_bf10)



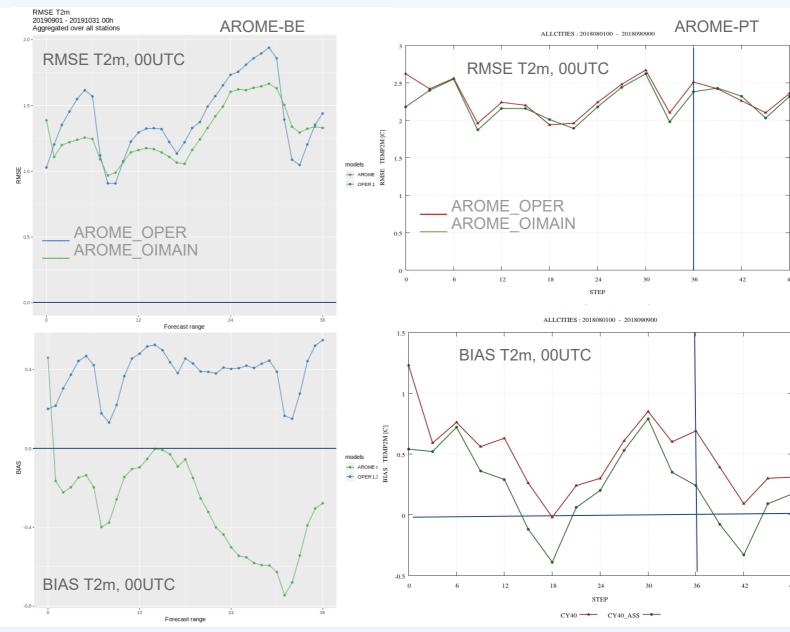

Algeria

2.5 km, 3h-cycling, GTS BUFR SYNOP

20-day period time series

Bias of parameter t2m Forecast Network : 00 hour

Belgium


1.3km, no-CANOPY, 3-h cycling, GTS BUFR SYNOP observations (~260/network)

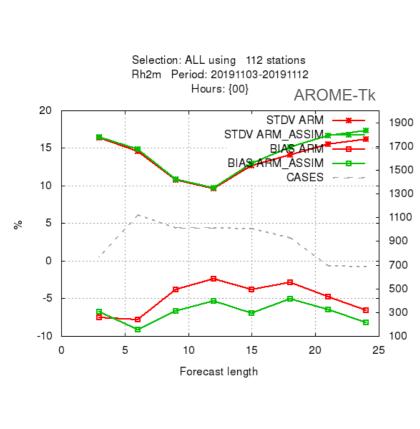
2- month FALL period of validation

Portugal

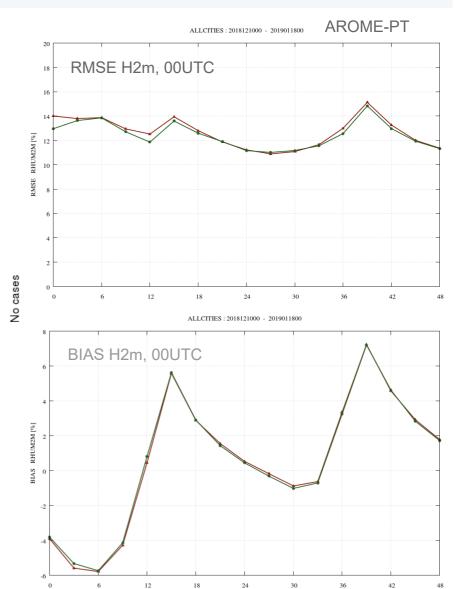
2.5km, no-CANOPY, 3-h cycling, GTS BUFR SYNOP (~350/network)

~1- month SUMMER period of validation

Turkey


~1- month WINTER period of validation

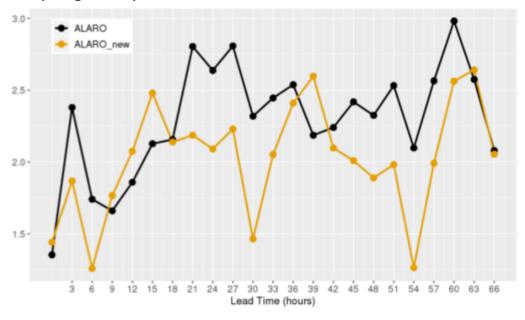
- > RMSE (top)
- > bias (down)


Portugal

2.5km, no-CANOPY, 3-h cycling, GTS BUFR SYNOP (~350/network)

~1- month WINTER period of validation

CY40_ASS -

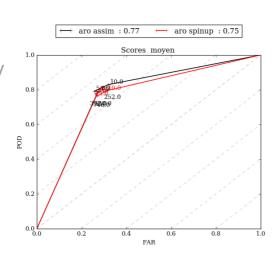


Poland

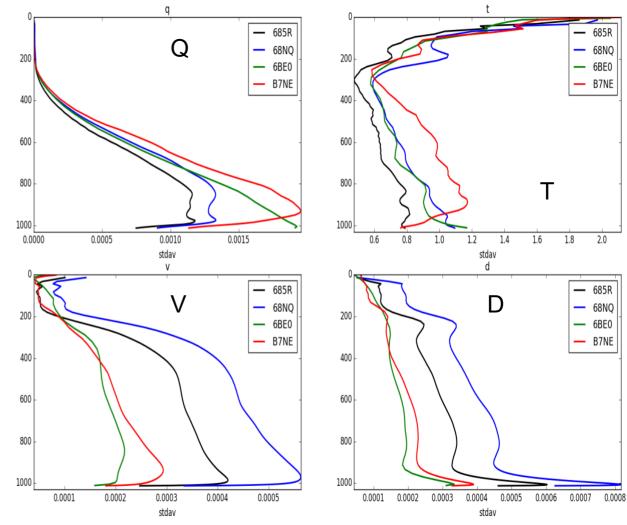
ALARO-CANARI 4.0km, 6h-cycling, OPLACE ASCII SYNOP, without SURFEX

~3 weeks cycling

RMSE T2M (degrees)


DA starters KIT (DAsKIT): upper-air component (REF)

Algeria & Portugal @ Météo_France


B-matrix modeling: flow-dependency aspects of climatological B-matrix using ensemble techniques

B-Matrix validation of AROME-PT:: 2.5km, L60, CY42T2
Validation of combined AROME_PT2
OI_MAIN+3D-Var (CY42T2) has revealed a slight improving using conventional + OIFS
HDF5 volumetric data (Portugal & Spain), in particular for larger amounts of 24-hour

accumulated precipitation (Skill Scores and Probability of Detection), keeping the False Alarm Rates:

Vertical profile of background error standard deviation

DA starters KIT (DAsKIT): upper-air component (REF)

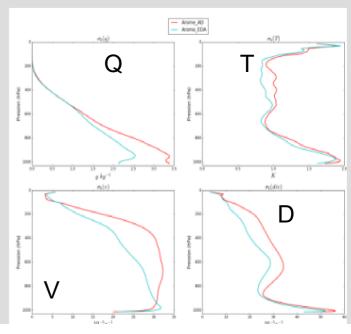
Morocco @ Météo_France

Feasibility/B-matrix validation studies

Case study 19/01/2018: 24h precipitation forecast

http://www.umr-cnrm.fr/aladin/IMG/pdf/assim_morocco 2018.pdf

ALADIN Data Assimilation basic kit Working Days Romania 19-21/09/2018 Bucharest,


Data assimilation: B matrix

Background-error covariances for AROME:

The first version of the backgounderror covariances for AROME-Maroc was calculated using AROME forecast ensemble coupled to Arpège in dynamic adaptation mode (Arome_AD).

The operational version is computed using an ensemble assimilation- based method with six independent perturbed assimilation cycles (Arome EDA).

Vertical profile of background error standard deviation

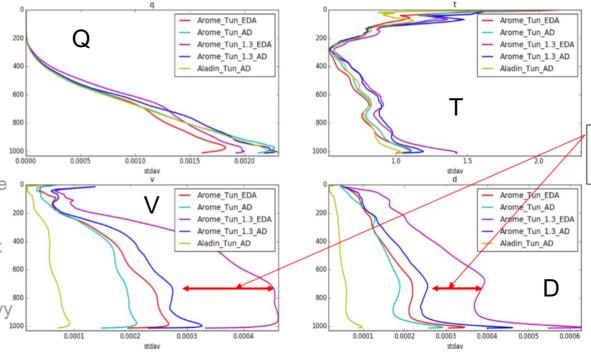
DA starters KIT (DAsKIT): upper-air component (REF)

Tunisia @ Météo_France

Ensemble B-matrix modeling studies: EDA vs. spin-up

Case study - 23 September 2016 Better Prediction for the cell localization and intensity:

Better Prediction for the cell localization and intensity for Arome 3DVAR compared to Spin up; Better scores for Arome 3DVAR EDA Bmatrix compared to Bmatrix Spin up


Convective Situation causing heavy rain & flood

http://www.umrcnrm.fr/aladin/IMG/pdf/wafa_khalfaoui presentation.pdf

3. AROME-Tunisie 3DVAR Configuration: B matrix diagnostics

Vertical profile of background error standard deviation

Increase in standard deviation of vorticity and divergence of Arome EDA versus Arome Spin up

Vertical profile of the standard deviation of specific humidity (q), temperature (t), vorticity (v) and divergence (d) for AROME-TUNISIE Spinup; AROME-Tunisie EDA and ALADIN-TUNISIE (green dot).

DAsKIT - Prague 19 September 2019

Conclusions & outlook

- > All countries have know-how to set up a DA cycling with conventional data (GTS BUFR SYNOP, TEMP, E-AMDAR)
- > Efforts are focused on setting a combined OI_MAIN+3D-VAR DA scheme (CY43):
 - . **surface DA KIT** is under validation and results are promising, but tuning efforts are required
 - using as reference recent feasibility studies with appropriate modeling of B-matrix and local high resolution data (for instance, ODIM radar)
- > All countries have data monitoring tools available locally (OBSMON & MANDALAY) but efforts have to be put to its regular usage
- > Validation tools are still missing in most of the countries
 In particular, there is an opportunity to implement HARP as a common tool,
 however more investment has to be made in that sense

Conclusions & outlook

- > Common A-H DA Training Course (2019) was a great opportunity to learn on actual available DA tools, but not all the DAsKIT countries could be present...
- > There are now 'communication platforms' between the DAsKIT partners (web & forum pages; annual DAsKIT Working Days; regular video-confs)
- > Foreseen SHORT-TERM ACTIONS
 - video-conf in June 2020 focus:
 validation/tuning of surface DA + combined OI_MAIN-3D-Var + issues
 - 2020 Joint LACE DA & DAsKIT WD, Vienna, September 2020

Thank you for your attention!

