Brussel, 8 April 2008

Experiments with perturbed Hirlam analyses based on Singular Vectors

Sibbo van der Veen KNMI The Netherlands

Compute 10 perturbations for Hirlam analysis from:

 - Hirlam Singular Vectors (Cape norm or Energy norm)

- error field of analysis

and make 11 forecasts

ECMWF scripts for perturbation computations were modified for use in the Hirlam system (KNMI)

 Adding perturbations to analysis in the Hirlam system performed by Kai Sattler (DMI)

Computation of perturbations

1) Compute singular vectors with Hirlam

2) scale amplitude with error field analysis

3) Gaussian sampling

4) linear combination of perturbations

Case study:

- Convective activity over southern Finland missed by Hirlam (22 August 2007, 6 UTC)

- Perturbations of temperature and velocity fields

New run: 20070821 12 UTC + 36 h

Radar image

Resolution and domain:

Resolution of Singular Vectors
 0.5 degree (55 km)

- Forecast domain:
 - 0.2 degree (22 km)

Error fields analysis from 4D-VAR

Initial temperature perturbations at 850 hPa (CAPE norm) cntr 0.5 C. max. 3C

Analysis VT:Tuesday 21 August 2007 12UTC 850hPa **temperature

Precipitation fields (CAPE norm)

Mean total precipitation intensity between 3 UTC and 9 UTC (mm / 6 h)

Precipitation fields (energy norm)

Mean total precipitation intensity between 3 UTC and 9 UTC (mm / 6 h)

Smaller initial temperature perturbation (CAPE norm, smaller amplitude, cntr 0.2 C,max 1.8 C)

Smaller initial velocity perturbations (CAPE norm, cntr 0.1 m/s, max. 0.7 m/s)

Precipitation fields (Cape norm)

Mean total precipitation intensity between 3 UTC and 9 UTC (mm / 6 h)

Ε

S

all members: strongest
 precipitation
 in reality more to the south than in the model

stronger perturbations cause more precipitation

Conclusions drawn from these preliminary experiments:

- 1) Perturbation amplitude maybe too high in first experiments
- 2) Both singular vectors based on *energy* norm and based on *CAPE norm* are able to trigger increased precipitation over Southern Finland (convection?)
- 3) lower amplitude with CAPE norm shows less pronounced extra precipitation

Further steps:

Look at additional model variables

Compute analysis error field with Hirlam model

- More testing and more case studies
- Make Hirlam ensemble forecasting operational