

Lake Parameterization in HIRLAM

E. Kourzeneva, RSHU

needs for a lake parameterization

- in some regions lakes may cover the significant part of the territory
- lakes affect surface fluxes
- ice covered/ ice free surface different physics
- SST analysis technology may lead to errors for lakes

contents

- lake model FLake
- coupling with RCA previous results
- issues:external data lake databasecold start data
- first results for HIRLAM

lake model FLake (author D. Mironov, DWD)

Lake model should

be computationally cheap, incorporate most of essential physics, not need tuning for the specific lake, need minimum of specific lake parameters

Lake model FLake

based on two-layer parametric representation of the temperature profile and self-simularity concept

 $\theta_s(t)$ — mixed layer temperature h(t) — mixed layer depth $\theta_b(t)$, —bottom temperature $D=h+\Delta h$ — lake depth.

to represent temperature profile shape-function and shape-factor are used

$$\theta = \begin{cases} \theta_s, & 0 \le z \le h \\ \theta_s - (\theta_s - \theta_b) \Phi_{\theta}(\xi), & h \le z \le D \end{cases} \quad \xi = \frac{(z - h)}{(D - h)}$$

$$\Phi_{\theta} = \frac{(\theta_{s} - \theta)}{(\theta_{s} - \theta_{b})} - \text{is approximated by}$$

$$\text{polinom}(\xi)$$

$$C_{\theta} = \int_{0}^{1} \Phi_{\theta}(\xi) d\xi$$

basic equations:

for mean water temperature

$$\frac{\partial \overline{\theta}}{\partial t} = \frac{1}{\rho_w c_w} [Q_s + I_s - Q_b - I(D)]$$

for bottom temperature

$$\begin{split} &\frac{1}{2}(D-h)^{2}\frac{d\theta_{s}}{dt} - \frac{d}{dt}\Big[C_{\theta\theta}(D-h)^{2}(\theta_{s} - \theta_{b})\Big] = \\ &= \frac{1}{\rho_{w}c_{w}}\Bigg[C_{Q}(D-h)(Q_{h} - Q_{b}) + (D-h)I(h) - \int_{h}^{D}I(z)dz\Bigg] \end{split}$$

for mixed layer temperature

$$h\frac{d\theta_s}{dt} = \frac{1}{\rho_w c_w} [Q_s + I_s - Q_h - I(h)]$$

model blocks

- prediction of mixed layer depth
 - convection
 - neutral and stable stratification
- short-wave radiation transfer
- ice and snow
- bottom sediments

individual lake parameter: depth!

previous results: coupling with RCA

- included into RCA as a parameterization, every time step
- RCA provided fluxes, FLake surface temperature
- Europe, resolution 40 km
- database for lake depth for Sweden, d=10m for most of European lakes, real depth for big European lakes
- sub-tiling according to Swedish lake database shallow (depth=3 m), medium (depth=7.4 m), deep (real depth)
- start in autumn all the lakes are mixed down to the bottom.

experiments and verification: for individual lakes

experiments and verification: for individual lakes

issues for the parameterization development for climate modeling and for NWP

external fields – lake depth, lake fraction

- projects: of COSMO, INTAS lake database
- sources: hydrological lake database dataset for ecosystems (GLCC at present, 1 km res.)
- hydrological lake database:

for Europe - national databases and water cadastres of Norway, Sweden, Finland, Russia (former USSR), Poland, Germany, Austria, Switzerland and others for the rest of the world – International Lake Environment Committee

9500 lakes

Ion, lat, mean depth, max. depth, area, name, country

Hydrological lake database

Soft: interface to combine data for specific atmospheric model grid and domain considering errors in both sources of data

issues for the parameterization development for climate modeling and for NWP

cold start (climate) data

need climate fields for all prognostic variables (mixed layer temperature, mixed layer depth, ... etc.)

perpetual year FLake runs (annual periodic regime) atm. climate in => lake climate out

use NCEP reanalysis data for all NCEP grid boxes, for all lakes with depth gradations of

-99999.0, 0.0, 2.0, 4.0, 6.0, 8.0, 12.0, 16.0, 20.0, 24.0, 30.0, 36.0, 42.0, 99999.0

experiment:

lake database - yes

cold start data – no, all lakes are mixed down to the bottom – Ok for November (but mixed layer temperature from SST)

newsnow version

11km res.

November 2006 – significant warm anomaly

cold start - 02.11.2006, hot starts with 6-hour cycling to 03.11.2006

experiment:

lake database - yes

cold start data – no, all lakes are mixed down to the bottom – Ok for November (but mixed layer temperature from SST)

newsnow version

11km res.

November 2006 – significant warm anomaly

cold start – 02.11.2006, hot starts with 6-hour cycling to 03.11.2006

06.04.2008

GrADS: COLA/IGES 2008-04-D3-16:35

to continue: cold start data, tests ... data assimilation

Acknowledgements:

- D. Mironov, DWD, P. Samuelsson, SMHI, G. Ganbat, RSHU,
 L. Rontu, FMI, S. Gollvick, SMHI
- Nordic Council, Swedish Institute, INTAS

Thank you for attention!

