Assimilation of Infrared Radiances Into the HIRLAM Model

Martin Stengel, Per Unden, Nils Gustafsson, Per Dahlgren, Magnus Lindskog

Outline

- Assimilation of IR radiances in clear-sky condition
 - Data preparation steps (SEVIRI radiances)
 - Example impact on analysis
 - Results of impact studies

- Assimilation of IR radiances in the presence of clouds
 - Observations above low-level clouds (not radiance-affecting)
 - Observations slightly affected by clouds
 - Exdenting the observation operator with a simplified moist physics scheme

SEVIRI data

• Resolution in space and time:

Imaging cycle of 15 minutes | 60 minutes res. used in 4D-Var 5km (IR) over central Europe | Spatial thinning applied (~90km)

SEVIRI data

• Data coverage:

Covers 2/3 of the HIRLAM-C22 domain

SEVIRI data

• Spectral resolution:

12 channels (8IR,1NIR,2VIS,1HRVIS) | Using water vapour channels only

Ensemble and mean of WV062 and WV073 T- and q-'Jacobians' (RTTOV):

Background statistics

• <u>Simulated radiances minus observed radiances</u> (6h forecast fields)

Background statistics

Monitoring of RMSE and Bias
 (Operational HIRLAM 6h-forecast fields used)

large BIAS found (2.6K)

Systematic error in:

- NWP?
- Observation?
- Observation operator? (RTTOV)

SEVIRI data preparation

- Data preparation steps
 - Processing of BTs and PGEs employing the SAF NWC software (for SEVIRI-segments 7 and 8)
 - Rejecting out-of-domain pixels
 - Rejecting cloudy pixels (PGE01/CMa, cloud mask)
 - Rejecting pixel which cover mountain areas
 - Selecting 1 pixel out of a 10x10 pixel box
 - BIAS correction applied to observations WV062 (flat, 2.6K)
 - First guess check
 - Spatial thinning (thinning box size = 90km)
 - 500 to 1200 pixels are then used in minimization

SEVIRI data preparation

• Example:

Impact on analysis

• Case study, 3D-Var:

Relative Humidity increment, 250 hPa

Relative Humidity increment, 500 hPa

Impact on analysis

• Case study, 3D-Var:

Relative Humidity increment, 250 hPa

Relative Humidity increment, 500 hPa

Observing system experiments

CTRL3D 3D-Var analysis with conventional observation only

SEV3D 3D-Var analysis with conventional and SEVIRI

observation SEVIRI; SEVIRI observation are taken only from one time slot, the one closest to analysis time is

chosen.

CTRL4D 4D-Var analysis with conventional observation only

SEV4D 4D-Var analysis with conventional and SEVIRI

observation SEVIRI; SEVIRI observation are taken from

six time slots, where each is the one closest to the

respective observation window centre

SigmaO 2K for both channels (observation error)

Period Summer month (24/06/2005 - 21/07/2005)

Winter month (02/12/2005 - 31/12/2005)

Cycle 6 hour assimilation cycle

Forecast 0-48 hours

HIRLAM C22 domain, 22km, 40 vertical levels, statistical balance

• Summer month / 3D-Var

• Summer month / 4D-Var

• Summer month / 3D-Var, 4D-Var

Mean sea level pressure forecast:

• Winter month / 4D-Var

Observations above low-level clouds

- Identifying not-radiance-affecting clouds:
 - Using a cloud top pressure/height information
 - Identify not-radiance-affecting clouds using local Jacobians or CTP threshold
 - Assimilation as in clear sky conditions
 - (Blacklisting only one channel for some cases)

Observations above low-level clouds

• Example (after screening):

Observations above low-level clouds

• Summer month / 4D-Var

Observations above mid-level clouds

- Strategy:
 - Identify slightly-radiance-affecting clouds using local Jacobians
 - Using properties to constrain a cloud in RTTOV

500<CTP<600hPa

Cloudy radiances / Extending the obs. operator

• Strategy:

- "Next-Generation" Simplified Moist Physics Package (SIMPHYS), (ECMWF)
- Simplified parameterization for convection
- Simplified parameterization for large scale cloud and precipitation processes
- Using sensitivity of modelled cloud to model fields of T and q
- → sensitivity of modelled cloudy radiances to T and q
- Provide sensitivity to assimilation system
- Goal: Mapping cloudy BG-O via cloud scheme sensitivities to T and q increments

Cloudy radiances / Extending the obs. operator

MSG1-SEVIRI

SIMPHYS

200507201200

Cloudy radiances / Problems

- First comparisons show: SIMPHYS underestimates clouds (cloud cover,.....)
- Performance of RTTOV?
 (ok for low levels water clouds?)
- Matching observations and model in space and time
- Identifying when the cloud scheme models 'realistic' clouds
- On/Off processes
- Errors in modelled land surface temperatures lead to errors in modelled IR window channel radiances

Summary / Future work

Clear-sky radiance assimilation

- Neutral to positive impact of SEVIRI radiances during the summer trial
- Neutral to slightly negative impact during winter; probably due to the inefficient Bias correction
- More impact studies needed
- Improve Bias correction, to take into account medium- and long-term trends of systematic errors
- Improve spatial data thinning (maybe 'supperobbing'?)

Cloudy radiance assimilation

- Strategies as described on previous slides
- First statistics of extended observation operator performance (not shown)
- First 1D-Var studies (not shown)
- Use in HIRVDA (long term goal)

