Recent developments of the Rasch-Kristjansson scheme in Hirlam

Karl-Ivar Ivarsson ASM April 2008 Brussels

In this presentation:

- Problems with the Hirlam 7.1.2 RK version
- Short presentation of the new RK (CAM3) version
- Prognostic cloud ice.
- Verifications
- Remaining problems and future work

The present Hirlam 7.1.2 RK-version works mainly good but...

- Small (light) precipitation too often
- Middle level cloud amount too often near 4 octas (gives good RMS error, but duty forecasters are not always happy)
- In case of strong jet-streams, there might be "noisy" cirrus cloud field
- Too less amount of low clouds in the new 7.1.2 reference set up. (Was not a big problem in reference version 6.3.5)

Left: Example of too much light precipitation and middle level cloud amounts that are too often near 4 octas. Right: New scheme.

Left :Noise at 250hPa RH (Td) fileds at old RK . Right: Not present with new RK. (11 km 6 min timestep)

Principal differences between old and new RK scheme:

- OLD: (RK98)The change of cloud condensate is computed directly from the local change of cloudcover + other things as well.
- NEW: (RK02) Local change of cloudcover not used. Replaced by a new set of equations.
- Sedimentation of cloudwater och -ice included (from Cam3 code)
- Reduced number of tuning coefficients in cloud fraction calculations, and make it dependent on vertical resolution of the model.
- Filtering of "freaky" tendencies for noise reduction.

New things: From where?

- Cam3 RK is based on Zhang et al (2002)
- Sedimentation of cloud condensate (Phil Rasch's own code in Cam3 – should not be limited by the CFLcriteria)
- Cirrus super saturation : Kärcher, Lohmann, (2002)
- Prognostic cloud ice calculation: Rotstayn (2000)
- Filtering Karl-Ivar
- Cloud fraction: Cam3 + Javier, Karl-Ivar mod.

Separate prognostic treatment of cloud water and ice in Hirlam

possible advantages:

- •Simulate the life cycle of mixed-phase clouds (Initial supercooled water, later ice)
- •Better spatial distribution of the cloud field:
- Spatial distribution of new clouds more related to relative humidity with respect to water.
- •Spatial distribution of old clouds more related to relative humidity with respect to ice.
- •Better use of detailed micro-physics.
- •Principal method : Cloud water is converted to cloud ice by using a crystal growth equation.
- •The Bergeron-Findeisen effect is accounted for by computing a characteristic time-scale of the ice crystals to grow big enough to fall out as precipitation.

Diagnostic fraction of the cloud condensate that is ice. (1-D – example)

Red dots = cloud water, blue dots = cloud ice, grey shading = clouds

Prognostic amount of cloud condensate that is ice.

Pseudo-satellite picture (2008-03-28-12z, obs. Sat. picture from 12:20z) Blue: thin ice cloud, white: thick ice clouds or mixed-phase clouds. Yellow: water clouds.

Same for 5.5km resolution

Verification

 Only "clean" comparisions between new and old RK have been done together with the new surface scheme

Model domain

Newsnow 200601: Ejx old RK-scheme, Ec3d: Cam3 etc. Ece18kfe: Cam3 etc + KF-eta

Newsnow 200707: Ejx: old RK-scheme, Ec3d: Cam3 etc. Ectopvcbr: Cam3 etc + oper. hlvcbr + reduced head conduction for low vegetation

March 1-28 -newsnow semi-operational ECM=ECMWF, E11=oper. Hirlam 11, Es3 = As E11 but with newsnow surface scheme.

Standard deviations, grey = obs.

February-March 2008

Remaining problems and future work

- Work : IFS -coding
- Problem :lce-clouds too often near 0 or 8 octas
- Solution : Adjust how the ice content affects the cloud cover calculation.
- Problem: Too little amount of low clouds when KF-eta is used.
- Solution : Adjust rhcrit.
- Other things:
- Introduce the dependence of different crystal habits
- KF at 5-10 km. Lisa Bengtssons modifications
- Prognostic CCN? May lead to better low clouds in cold season and better precipitation forecasts.

Crystal habits

The growth of ice crystals is faster near -5C and -15C due to the shape of the ice crystals. Splinters may increse the number of ice crystals near -6C and to some extent also near -15C.

References

- Rotstayn et al (2000):
 A Scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large scale models. Monthly weather review, p 1070-1088
- Lin et al (1983):
 Bulk parameterization of the snow field in a cloud model. J. of appl. Meteor. 22 1065-1092
- Miller and Young (1979):
 A numerical simulation of ice crystal growth from the vapor phase. J.A:S. 36 458-469
- Zhang et al: A modified formulation of fractional stratiform condensation rate in the NCAR Community atmospheric model J. Geophys. Res. 108(D1) 2003
- Rasch and Kristjansson: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Clim. 11 1587-1614 1998.
- Kärcher and Lohman 2002: A parmeterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols J. Geophys. Res. 107