

Recent performance improvements in HIRLAM 4D-VAR

Tomas Wilhelmsson

Swedish Meteorological and Hydrological Institute

HIRLAM All Staff Meeting

2008-04-09

HIRVDA 4D-VAR performance scaling

Niko Sokka (FMI):

"In the end of day, 4DVAR scales up to 84 processors in our system and then stalls."

Torgny Faxén (NSC):

Room for improved scaling

- Additional sources for parallelism
 - OpenMP
- Reduce interprocessor communication
 - SIswap on demand
- Reduce work
 - Fewer FFTs (also reduces communication)

Moore's law

- "Computer performance doubles every 18-24 months"
- What Gordon Moore really said (1965 and 1975):
 - The number of transistors that cheapest can be integrated on a chip doubles every two years.
- Until 2005 processors really got faster, since smaller transistors can also be clocked faster
 - But now clock frequencies are limited due to power and heat dissipation
 - However, the number of transistors on a chip still increases
- Instead of faster processors, we now get more processors per chip

Multi-core processors

- Is your new laptop "dual-core"?
- Multi-core is everywhere:
 - Linux clusters
 - SGI Altix
 - IBM PowerPC
 - Cray XT

• SMHI's new cluster will use Intel "Harpertown" <u>Quad-core</u> chips:

Intel Clovertown performance compared to current SMHI clusters

- Clovertown dual socket quad core at 2.66 GHz (8 processors)
- Dunder dual socket single core at 3.4 GHz (2 processors)
- Nodes are three times faster, performance per processor has decreased!
- HIRVDA speedup??

Model	Clovertown vs.	
	Dunder	
	performance	
HIRLAM	3.3	
HIRVDA	3.1	
AROME	3.6	

OpenMP to the rescue for HIRLAM 4DVAR?

- Multi-core nodes lends themselves to shared memory parallelization with OpenMP. Quick inter-core communications
- Larger MPI tasks, fewer, larger messages
- Incremental approach
- Physics was already done (through phcall and phtask)
- Now Semi-Langrangian dynamics too

OpenMP performance

- SMHI C22 area, 306x306 grid
 - Inner TL/AD loop at 1/3 resolution, 103x103 grid
 - What could OpenMP give on HPCE?

Number of threads										
Node	S	Tasks/no	de	MPI-tasks	Pure MPI	1	2	4	8	16
13	*	1	=	13	336	404	255	204	187	209
13	*	2	=	26	209	245	169	146	159	
13	*	4	=	52	169	181	148	162		

- OpenMP "works", but doesn't improve much over pure MPI for this case
- Note: LEN_LOOPS determines tasking in phcall.
 - Default was 2047, but 16 is better for HPCE

OpenMP problems

- The larger 582x448 RCR area would be more interesting
 - Inner loop at half resolution, 292x225 grid
 - But with OpenMP it crashes around RTMIOSYS
- Cannot combine (Scali) MPI with Intel Fortran OpenMP on current SMHI clusters
 - Severe slowdown if combined, but either MPI or OpenMP works fine

HIRVDA TL time step on 26 processors

HIRVDA TL time step on 26 processors

Effects on various optimizations on IFS performance (Debora Salmond, 2002)

Moving from Fujitsu VPP (vector machine) to IBM SP (cluster).

Effects on various optimizations on IFS performance (Debora Salmond, 2002)

Semi-Lagrangian Advection

Full cubic interpolation in 3D is 32 points (4x4x4)

Example: The HIRLAM C22 area (306x306 grid at 22 km resolution)

- Max wind speed in jet stream 120 m/s
- Time step 600 s
- => Distance 72 km = 3.3 grid points)
- Add stencil width (2) => nhalo= 6
- With 64 processors partitioned in 8x8:
 - 38x38 core points per processor
 - 50x50 including halo
- Halo area is 73% of core!
- But full halo is not needed everywhere!

HIRVDA 4D-VAR domain decomposition

- SMHI C22 area inner loop at 1/3 resolution, with 30 minute time step
 - 103 x 103 grid distributed over 26 processors, each get a 103x4 slice

Interpolation stencils requiring halo communication

Accumulated stencils in halo zone

Communicate whole rows with at least one required point

Tangent-Linear timestep without and with slswap' on demand

Zoom in on calpqr_tl

SIswap on demand timings

- SIswap 30-50% faster
- No significant improvement in runtime
- Load balance issues?

C22 area, 103x103 inner grid, 40 iterations HPCE 26 tasks on 2 nodes

	standard	on demand
minimize	257	255
slswap	18	13
slwap_ad	9	6

RCR area, 292x226 inner grid, 60 iterations HPCE 48 tasks on 3 nodes (RCR default)

	standard	on demand
minimize	2122	2080
slswap	163	110
slwap_ad	60	52

RCR area, 292x226 inner grid, 60 iterations HPCE 60 tasks on 4 nodes

	standard	on demand
minimize	1757	1708
slswap	161	111
slwap_ad	61	47

Nils Gustafsson: Remove and shorten FFTs

- Store trajectory in physical instead of spectral space
 - Removes 7-8 out of 25 FFTs
 - 7-8% faster!
- Smaller extension zone in TL and AD
 - Shorter FFTS (e.g. 400 down to 310)
 - Another 3-4% faster!

Soon to be include in trunk...

Conclusion

- HIRVDA OpenMP still not shown to be really useful
- SIswap on demand works, and expected to be more important for high numbers of processor
- Nothing beats avoiding work completely
- No silver bullet
 - Performance from small incremental improvements

Technology will allow larger areas "for free", but increasing the number of time steps and maintaining runtime will be harder

Expand to "continuous rows"

