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SI1: Eulerian versus residual mean overturning stream function24

The residual mean mass overturning stream function (Ψr, in kg/s) is the diagnostic variable rec-25

ommended by the Ocean Model Intercomparison Project (OMIP) endorsed in the Coupled Model26

Intercomparison Project Phase 6 (CMIP6) exercise (Griffies et al. 2016). It includes, in addition27

to the Eulerian mean mass transport in the meridional plane, the eddy-induced mass transport28

from parametrized subgrid-scale processes, namely the Gent and McWilliams (1990) mesoscale29

parametrization and the Fox-Kemper et al. (2008) submesoscale parametrization in the CNRM-30

CM6 climate model (Voldoire et al. 2019). Those mass transports quantify the contribution of31

eddy fluxes to tracer advection and are as such associated with no Eulerian mean volume trans-32

port. They are hardly measurable and in particular they are not included in the long-term RAPID33

section of the AMOC at 26.5◦N. They are not directly related to the Eulerian mean Ekman and34

geostrophic transports, making any physical decomposition of AMOC more challenging.35

As a consequence, we have used the Eulerian mean overturning stream function, which only36

includes the Eulerian mean volume transport resolved by CNRM-CM6 model and can be com-37

puted from the model’s meridional velocities. Hence it is comparable to RAPID measurements38

and it formally relates to the thermal wind relation in the geostrophic approximation, which is a39

requirement of our AMOC physical decomposition. We evaluate here the difference between both40

AMOC definitions. Overall, the Eulerian mean (Ψ, Fig.1a) overturning stream function is weaker41

than its residual mean counterpart (Ψr/ρ0 with ρ0 = 1025kg/m3, Fig.SI1a) by a few Sverdrups42

over the AMOC cell of the Atlantic ocean (Fig.1). This is confirmed by the mean AMOC (Fig.1b)43

which is increased by 11 to 25% south of 60◦N when including the eddy-induced transport. At the44

latitude of the RAPID array, it is increased by 14%, whereas at the latitudes of the OSNAP section45

(52− 60◦N, Lozier et al. (2017)) it is increased by 18%. However, both AMOC definitions have46

an interannual correlation above 0.95 south of 60◦N, thus indicating that the AMOC variability is47
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mostly not eddy-driven. We conclude that the mean AMOC significantly differs in CNRM-CM648

when computed as a residual mean transport, which biases model evaluation against observations,49

but that its interannual variability remains unchanged.50

SI2: Depth versus density coordinate AMOC51

In our study, we establish a simple diagnostic relation between the depth coordinate AMOC52

(hereafter AMOCz) variability and density anomalies at zonal boundaries of the Atlantic Ocean.53

We show here that because of a zonally-varying interface depth, no such simple relation exists for54

the density coordinate AMOC (hereafter AMOCσ ). We first recall the main differences between55

both AMOC definitions. The overturning circulation of the Atlantic ocean has historically been56

quantified with AMOCz (e.g. the RAPID array). It is a Eulerian transport, and as such it is easily57

calculated from the zonal section of meridional velocities. It dominates the northward oceanic heat58

transport outside of subpolar latitudes (McCarthy et al. 2015). However, over the past two decades,59

AMOCσ has been extensively used for studies of the subpolar North Atlantic (e.g. OVIDE and60

OSNAP arrays, Mercier et al. (2015); Lozier et al. (2019)). It is a residual mean transport because it61

depends on zonal co-variations of meridional velocities and the interface depth between the upper62

and lower AMOC limbs, which is an isopycnal. Therefore, it is more challenging to calculate as it63

should be computed online at the model time step frequency in numerical simulations. However, it64

dominates the northward oceanic heat transport at all latitudes of the Atlantic Ocean and it relates65

naturally to water mass transformations in density space.66

Let us illustrate the main dynamical difference between AMOCz and AMOCσ in the rectangular67

basin case. The AMOC transport is:68

AMOC =
∫ xE

xW

∫ 0

d
vdzdx
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with d either the constant depth zm of maximum overturning for AMOCz or the zonally-variable69

isopycnal depth dm (corresponding to the density σm of maximum overturning) for AMOCσ . Its70

geostrophic component can be expressed as an integral zonal pressure force exerted by the volume71

of fluid at its boundaries:72

AMOCg =
∫ xE

xW

∫ 0

d
vg(x,y,z, t)dzdx

=
1

ρ0 f

∫ xE

xW

∫ 0

d

∂P
∂x

dzdx

with xW and xE the western and eastern boundaries, vg the meridional geostrophic velocity and P73

the pressure. Leibniz integration formula allows to write this pressure gradient as an interior plus74

an interfacial pressure force:75

AMOCg =
1

ρ0 f

∫ xE

xW

(
∂

∂x

∫ 0

d
Pdz+P(d)

∂d
∂x

)
dx

=
1

ρ0 f

(∫ 0

d(xE)
P(xE ,z)dz−

∫ 0

d(xW )
P(xW ,z)dz+

∫ xE

xW

P(d)
∂d
∂x

dx

)

=
1

ρ0 f

(
∆

(∫ 0

d
Pdz
)
+∆xP(d)

∂d
∂x

)
with ∆x = xE − xW the basin zonal width, ∆(A(x)) = A(xE)−A(xW ) for any function A(x) and76

the overline denoting a zonal average. The first term represents the pressure force exerted by the77

volume of fluid onto the solid Earth at the lateral boundaries, and will be referred to as the ”lateral78

pressure force”. In the general case of a sloping bottom, this term becomes a bottom form stress79

exerted onto topography above the depth zm. The second term is the so-called ”interfacial form80

stress”, which represents the zonal pressure force exerted at the interface d onto the underlying81

fluid.82

We now replace the lower depth d by the depth zm of maximum meridional overturning in vertical83

coordinate and the depth dm = d(σ = σm) with σm the density of maximum meridional overturn-84

ing in density coordinate, respectively. We obtain the respective expressions for the geostrophic85
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component of the AMOC in depth and density coordinates:86

AMOCzg =
1

ρ0 f

∫ 0

zm

∆Pdz

AMOCσg =
1

ρ0 f

(
∆

(∫ 0

dm

Pdz
)
+∆xP(dm)

∂dm

∂x

)

It appears clearly that the main difference between both formulations of the AMOC is that the in-87

ferfacial form stress is a source of net meridional transport for the AMOCσ and not for the AMOCz.88

Indeed, because of a slanted lower boundary dm, a net zonal pressure force can be exerted onto89

the lower fluid. As a consequence of the geostrophic balance, this interfacial form stress induces a90

net meridional geostrophic flow above the depth dm. This latter term depends on the zonal profile91

of pressure at the interface, which is a function of the full zonal density section and dynamic sea92

level profile, and of the zonal profile of the isopycnal interface depth. As a consequence, no simple93

relation can be derived between AMOCσ and hydrographic properties at zonal boundaries. This94

is why AMOCσ has been discarded from our dynamical analysis, although we acknowledge its95

relevance for the study of meridional heat transports and water mass transformations (e.g. Mercier96

et al. (2015); Lozier et al. (2019)).97

SI3: How the density anomaly profile controls the maximum overturning depth and the98

thermal wind transport99

Determination of the maximum overturning depth100

In section 2e, we have established the depth dependency of the thermal wind transport TW (z)101

and concluded that a given density anomaly induces most AMOCg−sh transport if it occurs at the102

depth zm of maximum overturning. However, our diagnostic relation for a given depth zm does103

not predict what controls that depth. If we only consider the vertically-compensated geostrophic104

AMOCg−sh transport, that depth is a function of the full vertical profile of density times either105
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depth, or height above bottom. Indeed, the derivative of AMOCg−sh as a function of zm is:106

∂AMOCg−sh

∂ zm
=

g
ρ0 f

(∫ zm

−h

(
1+

z′

h

)
∆ρdz′+ zm

(
1+

zm

h

)
∆ρ− zm∆ρ +

∫ 0

zm

z′

h
∆ρdz′− zm

zm

h
∆ρ

)

=
g

ρ0 f

(∫ zm

−h

(
1+

z′

h

)
∆ρdz′+

∫ 0

zm

z′

h
∆ρdz′

)

where we have applied the formulas for the derivatives of a product and of an integral. The first107

term is the transport increase due to the increasing thickness of the upper limb, which is fully108

impacted by density anomalies occurring below zm. The second term is the transport reduction109

due to the increasing barotropic compensation of baroclinic transports driven by densities above110

zm. Near surface, the first term is larger so that the transport increases with depth. Near the111

bottom, the second term is larger so that the transport decreases with depth. In between, the depth112

of maximum overturning is reached when both terms are equal and opposite in sign, meaning that113

the transport reduction due to the upper limb densities exactly compensates the transport increase114

due to lower limb densities. Mathematically, it is :115

∂AMOCg−sh

∂ zm
= 0

=⇒
∫ zm

−h

(
1+

z′

h

)
∆ρdz′ =

∫ 0

zm

−z′

h
∆ρdz′

This relation shows that the depth zm depends crucially on the density anomaly profile. Qualita-116

tively, the larger the near-surface density anomalies, the shallower the maximum overturning and117

the shallower the density anomalies that induce most upper limb transport. In the particular case118
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of a constant density anomaly at all depths, we obtain :119

∂AMOCg−sh

∂ zm
= 0

=⇒

[
z′+

z′2

2h

]zm

−h

+

[
z′2

2h

]0

zm

= 0

=⇒ zm +h− h
2

= 0

=⇒ zm = −h
2

that is, a maximum overturning at mid-depth h
2 , and therefore a maximum thermal wind transport120

TW (z) induced by density anomalies at that depth.121

We illustrate the dependency of the maximum overturning depth on the density anomaly profile122

with Fig. SI2. Two vertically-symmetric profiles are shown with density anomalies located either123

near the surface (left) or near the bottom (right). In the former case (left), the near-surface negative124

density anomaly induces a positive (Northern Hemisphere) vertical shear of geostrophic velocities.125

By mass conservation the vertical mean sheared velocity must cancel out, hence positive velocities126

from the surface to near the base of the density anomaly, and negative velocities below. As a127

consequence, the associated stream function increases from surface to the depth where sheared128

velocities go to zero, and then decreases down to the bottom. The resulting depth zm of maximum129

overturning is close to the surface, near the basis of the density anomalies. Symmetrically, in the130

latter case (right), near-bottom density anomalies cause a vertical shear of geostrophic velocities131

and as a result of mass conservation, positive velocities from surface to near the top of the density132

anomalies, and then negative anomalies below. The associated overturning stream function reaches133

a maximum at a depth zm near the bottom, next to the top of density anomalies.134
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Determination of the maximum thermal wind transport135

We have shown that the density anomaly profile plays a key role in determining the depth of136

maximum overturning. Here we illustrate how this depth of maximum overturning, together with137

the density anomaly profile, controls the thermal wind transport TW . We recall that this thermal138

wind transport, in Sv/m, quantifies the contribution of density anomalies at a given depth to the139

sheared geostrophic transport above zm, so that its vertical integral is the value of the overturn-140

ing stream function at zm. Fig. SI2 shows that the thermal wind transport is only positive at the141

depth where density anomalies occur, and that for a given density anomaly, the closer to the max-142

imum overturning depth zm, the larger TW . As a consequence, TW is maximum near the basis of143

the surface-intensified density anomalies (left), and near the top of the bottom-intensified density144

anomalies (right). For a given density anomaly, TW decreases linearly towards the surface and145

bottom, to cancel out at both boundaries.146

Fig. SI3 illustrates how for a given zm, the magnitude of the thermal wind transport is propor-147

tional to that of density anomalies. In both examples, density anomalies are located at mid-depth,148

so that geostrophic velocities change sign at that depth and the resulting depth of maximum over-149

turning is zm =−h/2. The only difference is the doubling of the magnitude of density anomalies150

in the second case (right) compared to the first one (left). As a result, sheared velocities and their151

overturning stream function are also doubled, as well as TW(z) at the depths where density anoma-152

lies occur. The maximum overturning, which is by definition the vertical integral of the thermal153

wind transport, is therefore also doubled in the latter case.154
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SI4: Geostrophic AMOC computation with variable bathymetry155

Let us first consider a zonal section with strictly increasing topography on both sides of the156

deepest bathymetry−hb. In this case, the baroclinic geostrophic transport of AMOC is insensitive157

to topographic details. The only requirement is to consider at each depth the easternmost and158

westernmost densities for the computation of the baroclinic geostrophic AMOC transport. Indeed,159

we have:160

AMOCBCg = − g
ρ0 f

∫ 0

zm

∫ xE(z)

xW (z)

∫ z

−h(x)

∂ρ

∂x
(z′)dz′dxdz

= − g
ρ0 f

∫ xE(0)

xW (0)

∫ 0

max(−h,zm)

∫ z

−h(x)

∂ρ

∂x
(z′)dz′dzdx

= − g
ρ0 f

∫ xE(0)

xW (0)

∫ 0

max(−h,zm)

(∫ max(−h,zm)

−h(x)

∂ρ

∂x
(z′)dz′+

∫ z

max(−h,zm)

∂ρ

∂x
(z′)dz′

)
dzdx

= +
g

ρ0 f

∫ xE(0)

xW (0)

(∫ max(−h,zm)

−h(x)
max(−h,zm)

∂ρ

∂x
dz′+

∫ 0

max(−h,zm)
z′

∂ρ

∂x
dz′
)

dx

= +
g

ρ0 f

(∫ xE(zm)

xW (zm)

∫ zm

−h(x)
zm

∂ρ

∂x
dz′dx+

∫ xE(0)

xW (0)

∫ 0

max(−h,zm)
z′

∂ρ

∂x
dz′dx

)

where we have used the double integration rule. In the last step, we have noted that the first161

integral vanishes when h < −zm, so that integrals between xW (0) and xW (zm) and between xE(0)162

and xE(zm) vanish and max(−h,zm) = zm between xW (zm) and xE(zm), since h > −zm. Finally,163

reversing the order of integration and integrating zonally yields:164

AMOCBCg = +
g

ρ0 f

(∫ zm

−hb

∫ xE(z)

xW (z)
zm

∂ρ

∂x
dxdz+

∫ 0

zm

∫ xE(z)

xW (z)
z
∂ρ

∂x
dxdz

)

= +
zmg
ρ0 f

∫ zm

−hb

(
ρ(xE(z),z)−ρ(xW (z),z)

)
dz+

g
ρ0 f

∫ 0

zm

z
(

ρ(xE(z),z)−ρ(xW (z),z)
)

dz

= +
zmg
ρ0 f

∫ zm

−hb

∆ρ(z)dz+
g

ρ0 f

∫ 0

zm

z∆ρ(z)dz

with ∆ρ(z) =
(

ρ(xE(z),z)−ρ(xW (z),z)
)

. The reversal of vertical and zonal integrals is allowed165

by the assumption of a strictly monotonic batymetry on both sides of hb, which is the mathematical166
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translation of the neglect of ridges and islands. The above expression is identical to the rectangular167

basin case, but we evaluate the boundary density at the westernmost and easternmost location of168

each depth, and we integrate the thermal wind relation from the deepest bathymetry hb.169

The section-integrated meridional transport becomes:170

Ψ(−hb) = AMOCE +
∫ 0

−hb

∫ xE(z)

xW (z)

(
vg(−h)− g

ρ0 f

∫ z

−h(x)

∂ρ

∂x
(z′)dz′

)
dxdz

= AMOCE +
∫ xE(0)

xW (0)

∫ 0

−h(x)

(
vg(−h)− g

ρ0 f

∫ z

−h(x)

∂ρ

∂x
(z′)dz′

)
dzdx

= AMOCE +
∫ xE(0)

xW (0)

(
h(x)vg(−h)− g

ρ0 f

∫ 0

−h(x)

∫ 0

z′

∂ρ

∂x
(z′)dzdz′

)
dx

= AMOCE +∆x(0)hvg(−h)+
g

ρ0 f

∫ xE(0)

xW (0)

∫ 0

−h(x)
z′

∂ρ

∂x
(z′)dz′dx

= AMOCE +∆x(0)
(

hvg(−h)+h′vg(−h)′
)
+

g
ρ0 f

∫ 0

−hb

z∆ρ(z)dz

where ∆x(0) = xE(0)− xW (0) and the overline and prime denote a zonal mean and anomaly. We171

have simplified the double vertical integral and reversed zonal and vertical integral similarly as for172

AMOCBCg. The term involving zonal anomalies is part of the so-called ”external mode”, which is173

the only explicit dependency to the reference vertical level chosen for the thermal wind integration.174

It can be viewed as a projection of the barotropic (gyre) transport onto the AMOC. We finally get:175

Ψ(−hb) = 0

⇐⇒ vg(−h) = − 1
h∆x(0)

(
AMOCE +∆x(0)h′vg(−h)′+

g
ρ0 f

∫ 0

−hb

z∆ρ(z)dz

)
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which yields the barotropic geostrophic transport of AMOC:176

AMOCBT g =
∫ 0

zm

∫ xE(z)

xW (z)
vg(−h)dxdz

=
∫ xE(0)

xW (0)

∫ 0

max(−h,zm)
vg(−h)dzdx

= −
∫ xE(0)

xW (0)
vg(−h)max(−h,zm)dx

= +
∫ xE(0)

xW (0)
vg(−h)min(h,−zm)dx

= ∆x(0)vg(−h)min(h,−zm)

= ∆x(0)
(

vg(−h)min(h,−zm)+min(h,−zm)′ vg(−h)′
)

= ∆x(0)
(
− vg(−h)zm +min(h,−zm)′ vg(−h)′

)
where zm = −min(h,−zm) is the mean depth of the upper limb AMOC zonal section. Finally,177

expressing vg(−h) as deduced from the no net meridional flow condition gives:178

AMOCBT g = +
zm

h

(
AMOCE +

g
ρ0 f

∫ 0

−hb

z∆ρ(z)dz

)
+∆x(0)

(
zm

h
h′vg(−h)′+min(h,−zm)′ vg(−h)′

)

Again, it resembles the rectangular basin case. Similarly to AMOCBCg, the zonal and vertical179

thermal wind integrations are little modified. We have replaced the factor zm/h by its zonal average180

zm/h, which still represents the fraction of the total barotropic transport that is located in the upper181

AMOC limb. Most importantly, we have added the ”external mode” which represents the zonal182

covariance of vg(−h) with bathymetry and the upper limb depth:183

AMOCg−EM = ∆x(0)

(
zm

h
h′vg(−h)′+min(h,−zm)′ vg(−h)′

)

It is generally not null because of the existence of boundary currents that lean on topographic184

obstacles, and hence non-null covariances between bottom velocity and either bathymetry or the185

upper limb depth. In section SI5, we show that the external mode can be equivalently expressed186
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as an integral corrected bottom velocity (Baehr et al. 2004) or barotropic velocity (Hirschi and187

Marotzke 2007). Finally, we obtain an almost identical expression for the AMOC as in the rectan-188

gular basin case, with the addition of the ”external mode” (equation 19):189

AMOC = −(1+ zm

h
)
∆x(0)
ρ0 f

τx +
g

ρ0 f

(∫ zm

−hb

(zm +
zm

h
z)∆ρ(z)dz+

∫ 0

zm

z(1+
zm

h
)∆ρ(z)dz

)
+∆x(0)

(
zm

h
h′vg(−h)′+min(h,−zm)′ vg(−h)′

)

In the general case of a non-monotonic topography (e.g. in the presence of ridges and is-190

lands), the basin can be divided into a discrete number n > 1 of subbasins of strictly monotonic191

bathymetry. The above AMOCBCg formulation remains valid for each subbasin of index i, with its192

zonal boundaries being either closed by bathymetry or open above seamounts. The total AMOCBCg193

transport becomes:194

AMOCBCg =
n

∑
i=1

(
zmg
ρ0 f

∫ zm

−hb

∆ρi(z)dz+
g

ρ0 f

∫ 0

zm

z∆ρi(z)dz

)
=

zmg
ρ0 f

∫ zm

−hb

(
∑

z=−h(xEi)

ρ(xEi,z)− ∑
z=−h(xWi)

ρ(xWi,z)
)

dz

+
g

ρ0 f

∫ 0

zm

z
(

∑
z=−h(xEi)

ρ(xEi,z)− ∑
z=−h(xWi)

ρ(xWi,z)
)

dz

where we have noted that densities at open boundaries cancel out, so that only bottom densities195

(where z =−h(xEi) and z =−h(xWi)) affect the AMOCBCg transport. With a similar development196

for the barotropic compensation of the net baroclinic flow, the AMOCBT g becomes:197

AMOCBT g =
zm

h

(
AMOCE +

g
ρ0 f

∫ 0

−hb

z
(

∑
z=−h(xEi)

ρ(xEi,z)− ∑
z=−h(xWi)

ρ(xWi,z)
)

dz

)
+AMOCg−EM

13



Finally, the AMOC reconstruction becomes:198

AMOC = −(1+ zm

h
)
∆x(0)
ρ0 f

τx

+
g

ρ0 f

(∫ zm

−hb

(zm +
zm

h
z)
(

∑
z=−h(xEi)

ρ(xEi,z)− ∑
z=−h(xWi)

ρ(xWi,z)
)

dz

+
∫ 0

zm

z(1+
zm

h
)
(

∑
z=−h(xEi)

ρ(xEi,z)− ∑
z=−h(xWi)

ρ(xWi,z)
)

dz
)

+∆x(0)

(
zm

h
h′vg(−h)′+min(h,−zm)′ vg(−h)′

)

It is almost identical to the single basin case, except that instead of evaluating the westernmost199

and easternmost density at each depth, all western and eastern boundary densities contribute to the200

geostrophic shear AMOC transport, their number depending on depth and latitude. We evaluate201

both AMOC reconstructions in SI6 to show that the single boundary definition gives an accurate202

approximation of the AMOCg−sh transport in the CNRM-CM6 model.203

SI5: Alternative formulations of the external mode transport204

We demonstrate here that the external mode AMOC transport AMOCg−EM of equation 19 is205

identical to the overturning contribution originated from bottom velocities of Baehr et al. (2004)206

(their equations 11 and 12) and to the external mode resulting from barotropic velocities of Hirschi207

and Marotzke (2007) (their equations 1 and 16).208

The overturning contribution at the depth zm, Ψb(zm), originated by the bottom velocities, is209

defined by Baehr et al. (2004) as:210

Ψb(zm) = −
∫ zm

−hb

∫ xE(z)

xW (z)
vcorr(−h)dxdz

= +
∫ 0

zm

∫ xE(z)

xW (z)
v(−h)dxdz+

zm

h

∫ 0

−hb

∫ xE(z)

xW (z)
v(−h)dxdz

'
∫ 0

zm

∫ xE(z)

xW (z)
vg(−h)dxdz+

zm

h

∫ 0

−hb

∫ xE(z)

xW (z)
vg(−h)dxdz

14



where we have used the no net volumic flow condition in the first step, and we have assumed,211

as it is implicitly done by Baehr et al. (2004), that bottom velocities are geostrophic in order to212

reconstruct a geostrophic plus Ekman AMOC transport. The second term is the contribution of the213

section-averaged bottom geostrophic velocities to the AMOC, which is cancelled out by the no net214

volumic flow condition. Note that we have corrected an error of sign in equation 11 of Baehr et al.215

(2004), and an error in the upper bound of vertical integration in their equation 12. Reverting the216

order of integration and decomposing vg(−h), h and min(zm,h) into their zonal mean and anomaly,217

we obtain:218

Ψb(zm) =
∫ xE(0)

xW (0)

∫ 0

max(zm,−h)
vg(−h)dxdz+

zm

h

∫ xE(0)

xW (0)

∫ 0

−h(x)
vg(−h)dxdz

=
∫ xE(0)

xW (0)

∫ 0

min(h,−zm)
vg(−h)dx+

zm

h

∫ xE(0)

xW (0)
h(x)vg(−h)dx

=
∫ xE(0)

xW (0)
min(h,−zm)vg(−h)dx− zm

h

∫ xE(0)

xW (0)
h(x)vg(−h)dx

= ∆x(0)

(
− zmvg(−h)+min(h,−zm)′vg(−h)′+

zm

h

(
hvg(−h)+h′vg(−h)′

))

= ∆x(0)

(
min(h,−zm)′vg(−h)′+

zm

h
h′vg(−h)′

)
= AMOCg−EM

defining zm = −min(h,−zm) as in SI2. The equivalence of both formulations means that the219

external mode transport resulting from zonal covariances of vg(−h) with bathymetry or the upper220

limb depth is identical to the upper limb transport resulting from bottom velocities to which the221

section averaged value has been removed to ensure no net volumic flow.222

The external mode transport Ψex of Hirschi and Marotzke (2007) (their equation 16) results223

from barotropic velocities. Let us first reformulate the barotropic velocities vBT of Hirschi and224

Marotzke (2007). Under their decomposition of equation 16 (equivalent to our equation 19), vBT225

is not the vertical mean velocity (their equation 1), because the shear velocity vsh is expressed with226
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a zonally-integrated compensation (their equation 12) so that it ”contain[s] a barotropic contribu-227

tion” (Hirschi and Marotzke (2007), paragraph after their equation 14). As a consequence:228

vBT = < v >−< vsh >

= < v >−< vBCg >+
1

h∆x(0)

∫ xE

xW

∫ 0

−h
vBCgdzdx

with <> the vertical averaging operator, and vBCg = vg− vg(−h) the baroclinic geostrophic ve-229

locities deduced from the thermal wind relation (identical to ṽ of Hirschi and Marotzke (2007)).230

We note that by definition:231

< v > = < vg(−h)>+< vBCg >+< vE >

= vg(−h)+< vBCg >+
VE

h

with VE the vertically-integrated Ekman transport. Therefore:232

vBT = vg(−h)+
1

h∆x(0)

∫ xE

xW

∫ 0

−h
vBCgdzdx+

VE

h

Identically to our section SI4, the no net basin-scale flow constraint is:233

vg(−h) = − 1
h∆x(0)

(
AMOCE +∆x(0)h′vg(−h)′+

∫ xE

xW

∫ 0

−h
vBCgdzdx

)

Finally, the external mode AMOC transport of Hirschi and Marotzke (2007) is:234

Ψex =
∫ xE

xW

∫ 0

zm

vBT dzdx

= −zm

h

(
−∆x(0)vg(−h)′h′−

∫ xE

xW

∫ 0

−h
vBCgdzdx−AMOCE

)

−zm

h

(∫ xE

xW

∫ 0

−h
vBCgdzdx+AMOCE

)
+∆x(0)vg(−h)′min(h,−z′m)

= ∆x(0)

(
zm

h
h′vg(−h)′+min(h,−zm)′ vg(−h)′

)
= AMOCg−EM
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The contributions of Ekman and baroclinic geostrophic velocities to the external mode are can-235

celled by that of the barotropic geostrophic velocity due to the no net integral flow constraint. As236

a consequence, only zonal covariances of the latter with either bathymetry or the upper limb depth237

are a source of external mode transport, without causing any net integral flow.238

SI6: Sensitivity tests239

Boundary definition240

We have proposed in section SI4 two AMOC reconstructions under variable topography, dif-241

fering only by the AMOCg−sh transport formulation. The former considers a single western and242

eastern boundary, and the latter considers multiple western and eastern boundaries. The location243

and depth of boundaries are displayed in Fig.SI4a-b with a single boundary, and in Fig.SI4c-d244

with multiple boundaries. In the single boundary case, zonal boundaries are defined at each depth245

and latitude as the westernmost and easternmost oceanic grid cell. They are mostly located in246

the steep continental slopes near the coastline. Mid-oceanic ridges and the western flank of the247

Caribbean archipelago are mostly neglected, as a consequence of the strictly monotonic topogra-248

phy assumption. In the multiple boundary case, western (respectively eastern) boundaries are all249

oceanic grid cells neighbouring a continental grid cell to the west (respectively to the east). As250

a consequence, all but flat bottom grid cells are located at a zonal boundary. In particular, both251

flanks of mid-oceanic ridges and islands are included in this boundary definition. In both cases,252

the deepest bathymetry hb is deduced at each latitude from the depth of the deepest boundary grid253

cell.254

Fig.SI5 displays the Hovmoeller diagram of a) the total AMOC reconstruction and b) its255

geostrophic shear contribution as a function of latitude in the multiple boundary case. Similarly to256

the single boundary case, the AMOC reconstruction is able to capture the centennial AMOC cycle257
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of CNRM-CM6 both in terms of phase and amplitude. The similarity between both reconstructions258

shows the dominant role of westernmost and easternmost densities in setting the AMOCg−sh vari-259

ability. Main differences between both definitions occur in the 10−30◦N latitude band, suggesting260

some contribution of the Caribbean islands and Florida peninsula to the AMOCg−sh variability. In261

the 10−20◦N latitude band, the AMOC variability is improved and reduced with multiple bound-262

aries, whereas in the 20− 30◦N latitude band, it is noisier and partly out of phase with the total263

AMOC. This latter result is likely related to errors in the external mode transport reconstruction,264

as it largely dominates the AMOC at those latitudes (e.g. (McCarthy et al. 2015)). It could be265

related to the geostrophic assumption of bottom velocities, or numerical errors related to NEMO266

model’s Arakawa-C grid.267

Fig.SI6 displays the Talyor diagram of the AMOC reconstruction with a single boundary and268

multiple boundaries as a function of the total AMOC averaged over latitude bands (colored sym-269

bols) and its full meridional average over the 30◦S−60◦N latitude band excluding the Deep Trop-270

ics (black symbols). It confirms quantitatively the results found in the Hovmoeller diagram. Under271

either boundary definition, the AMOC reconstruction explains most of the AMOC variance at all272

latitude bands. The multiple boundary definition overperforms the single boundary one in terms of273

correlation at all latitude bands but between 15−30◦N. Overall, the westernmost and easternmost274

boundary densities explain most of the low-frequency AMOC variability.275

Inclusion of the external mode276

The bottom currents map (Fig.2c) suggests that the external mode plays a significant role in the277

total AMOC at western boundaries and in subpolar latitudes. We diagnose here the added value278

of including it to the AMOC reconstruction. Fig.SI6 evaluates in a Taylor diagram the single279

boundary AMOC reconstruction with (circles) and without (lower triangle) the external mode280
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contribution. There is no clear added value of including the external mode to the reconstruction281

of the multidecadal AMOC variability. Indeed, at all latitude bands, the AMOC reconstruction282

without the external mode explains over 80% of the AMOC variance (r > 0.9), with a normalized283

standard deviation within 30% of unity and a normalized root mean squared error below 0.5.284

Including the external mode marginally improves the normalized standard deviation and reduces285

the error of the meridional average, but this results from compensation between latitude bands286

as the improvement is overall not evident. We conclude that the inclusion of the external mode287

is physically motivated but it contributes marginally to the AMOC low-frequency variability in288

CNRM-CM6.289
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Figure SI 1. a) Average residual Atlantic meridional overturning stream function (Ψr/ρ0 in Sv, with ρ0 =

1025kg/m3) in CNRM-CM6. Ψr represents the residual mean mass transport (in kg/s) that includes the Eulerian

mean circulation plus the parametrized eddy-driven mass overturning. The dashed black line shows the depth

zm = −997m of maximum overturning. b) (top) Atlantic Meridional Overturning Circulation deduced as the

depth-maximum Eulerian mean (AMOC, black) and residual mean (AMOCr, blue) stream function, and (bottom)

their interannual correlation (r(AMOCr,AMOC)) in CNRM-CM6.
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Figure SI 2. Control of the maximum overturning depth zm by the density anomaly profile ∆ρ(z). Two

vertically-symmetric cases are shown to illustrate how the depth where ∆ρ(z) (blue) occurs controls the vertical

profile of the sheared geostrophic velocities (vg−sh, red), their overturning stream function (Ψg−sh, brown), the

value of zm and ultimately the thermal wind transport (TW , green). For illustrative purposes, we assume that the

overturning is entirely determined by sheared geostrophic velocities vg−sh.
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Figure SI 3. Control of the thermal wind transport TW by the magnitude of density anomalies. Two cases are

shown to illustrate that for a given maximum overturning depth zm, the thermal wind transport TW (green) at a

given depth is proportional to the magnitude of the density anomaly ∆ρ (blue). Sheared geostrophic velocities

(vg−sh, red) and their overturning stream function (Ψg−sh, brown) are also shown. For illustrative purposes, we

assume that the overturning is entirely determined by sheared geostrophic velocities vg−sh.
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Figure SI 4. Depth of zonal boundaries used for the geostrophic shear transport reconstruction AMOCg−sh

(shades) in the a) single and b) multiple boundary case. Bathymetric contours are displayed in black.
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Figure SI 5. Hovmoeller diagram of the 25-year average a) AMOC reconstruction anomaly (AMOCE +

AMOCg) and b) its geostrophic shear component (AMOCg−sh) when considering multiple western and eastern

boundaries at each latitude and depth.

376

377

378

27



0.0 0.1 0.2 0.3
0.4

0.5
0.6

0.7

0.8

0.9
0.95

0.99

Correlation

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05
Normalized standard de iation

0.00
0.15

0.30
0.45

0.60
0.75

0.90
1.05

1.
0 0.5

1.5

2.
0

AMOC
AMOCE+AMOCg single boundary
AMOCE+AMOCg multiple boundaries
AMOCg− sh+AMOCE− sh single boundary

−30

−15

0

15

30

45

60

la
tit
ud

e 
(∘
N
∘

Figure SI 6. a) Taylor diagram of the 25-year average AMOC reconstruction with single boundary (circles),

multiple boundaries (diamonds), and with a single boundary when excluding the external mode (lower triangle),

as a function of the total AMOC (star). Colors indicate the latitude (15◦ average), with black symbols the full

meridional average over the 30◦S−60◦N latitude band excluding the Deep Tropics (black symbols).
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