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ABSTRACT

A specific event, called a low-visibility procedure (LVP), has been defined when visibility is under 600 m

and/or the ceiling is under 60 m at Paris-Charles de Gaulle Airport, Paris, France, to ensure air traffic safety

and to reduce the economic issues related to poor visibility conditions. The Local Ensemble Prediction

System (LEPS) has been designed to estimate LVP likelihood in order to help forecasters in their tasks. This

work evaluates the skill of LEPS for each type of LVP that takes place at the airport area during five winter

seasons from 2002 to 2007. An event-based classification reveals that stratus base lowering, advection, and

radiation fogs make up for 78% of the LVP cases that occurred near the airport during this period. This study

also demonstrates that LEPS is skillful on these types of event for short-term forecasts. When the ensemble

runs start with initialized LVP events, the prediction of advection fogs is as skillful as the prediction of

radiation fog events and stratus base lowering. At 3 and 6 h before the runs where LVP events were ini-

tialized, LEPS still shows positive skill for radiation fog events and stratus base lowering cases.

1. Introduction

During the winter, airport authorities at Paris-Charles

de Gaulle Airport, in Paris, France, are concerned with

major management and safety issues caused by the oc-

currence of fog and low-ceiling events. Under these low-

visibility conditions, low-visibility procedures (LVPs)

are taken to safely manage the airport activity when

visibility is less than 600 m and/or a ceiling is less than

60 m. Unfortunately, these procedures reduce by a fac-

tor of 2 the airport’s efficiency for takeoffs and landings,

causing flight delays or cancellations.

Most of the current operational systems for fore-

casting the fog and ceiling at an airport rely on statis-

tical methods like model output statistics (MOS; Glahn

and Lowry 1972; Koziara et al. 1983) or artificial neural

networks (ANNs; Fabbian et al. 2007; Bremnes and

Michaelides 2007; Marzban et al. 2007). These methods

use statistical postprocessing of numerical model out-

puts to improve forecast quality, especially when model

outputs are combined with surface observations. Their

main advantage, compared to LEPS, is that they can

provide spatial low-visibility forecasts. However, the

lack of information on the physical processes beneath

the fog formation and development is one of their un-

desirable characteristics because the link between the

predictors and the predictand is purely statistical.

Therefore, these statistical methods act like ‘‘black boxes’’

and the fitted statistical coefficients are physically diffi-

cult to interpret. Recently, the National Centers for En-

vironmental Prediction (NCEP) have developed a fog

ensemble prediction product based on the postprocess-

ing of the Short-Range Ensemble Forecast (SREF) sys-

tem. This system predicts the fog occurrence probability

by diagnosing the fog conditions from the SREF ensem-

ble members over the United States (Zhou et al. 2007).

As a part of the forecasting effort undertaken to facil-

itate the decision-making process at Paris-Charles de

Gaulle Airport (Richardson 2000), a local ensemble

prediction approach has been adopted. The Local En-

semble Prediction System (LEPS; Roquelaure and

Bergot 2007, 2008, 2009) was designed to satisfy the
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specific requirements of predicting low-visibility and

low-ceiling events. The local ensemble is generated from

perturbations on initial conditions (atmosphere, soil,

and low-cloud initialization), and mesoscale forcings are

required to run the 1D numerical model. Perturbations

are computed from past data; from on-site observations

for initial conditions and from the 3D NWP version of

the Aire Limitée Adaptation Dynamique Développe-

ment International (Aladin) model for mesoscale forc-

ings. These perturbation computations have been

described previously (Roquelaure and Bergot 2007).

This local ensemble strategy provides the likelihood of

LVP but it also has the potential to give insights into the

physical processes during low-visibility events that are

not accessible with MOS or ANN schemes. Moreover,

LEPS is calibrated by the Bayesian averaging method

(BMA), which highlights the main sources of un-

certainty in the system by computing specific weights for

each ensemble member. By these means, LEPS provides

the likelihood of LVP over the airport for the next 12 h.

These forecasts are necessary to maintain a high level of

efficiency on the airport as well as reinforcing airport

activity safety in poor visibility conditions.

In Roquelaure and Bergot (2008), the BMA calibra-

tion has been validated for the prediction of LVP vari-

able over the Paris airport. The system provided reliable

very short-term forecasts (12 h) of the LVP likelihood,

along with interesting relative operating characteristics

of LVP forecasts during the winter of 2004/05. However,

some questions still remain as to how the ensemble is

able to discriminate the type of LVP events. In fact, the

LVP category includes various types of low-visibility

events, which are controlled by different physical pro-

cesses including radiation fog events, which are piloted

by radiative cooling over the land; advection fog driven

by advection, which induces the mixing of air parcels of

contrasting temperatures; and lowering stratus events,

which are induced by the moistening and/or the cool-

ing of the layer below the boundary layer stratiform

cloud, etc. This work tries to highlight the strengths

and weaknesses of LEPS for each LVP type. It is rea-

sonable to question the usefulness of a local ensem-

ble prediction system for forecasting advection fog

events since this type of fog event is driven by three-

dimensional advections. In this study, the ensemble skill

will be also assessed by comparing the ensemble mean

with the reference deterministic forecast to analyze the

mean ensemble LVP forecast’s possible usefulness in

the forecasting process.

This present paper focuses on the discrimination po-

tential of LEPS related to each type of low-visibility

event, by analyzing the system’s performance in several

areas (e.g., hit rates and false alarm rates, relative errors

on formation–dissipation time). LVP events observed at

the Paris-Charles de Gaulle Airport during the winter

seasons of 2002–07 are used for this purpose. To achieve

the identification of LVP types, a classification based on

Tardif and Rasmussen’s (2007) algorithm is performed

over five winter seasons from 2002 to 2007 at Charles de

Gaulle Airport to understand its low-visibility event cli-

matology. Then, from this classification, LEPS perfor-

mance levels are assessed to analyze the local ensemble

forecasting behavior patterns for each type of event.

As a consequence, section 2 explores the climatology

of LVP events over Charles de Gaulle Airport. Section 3

briefly presents LEPS and the BMA calibration applied

to calibrate the ensemble. The BMA calibration method

is applied over the full training dataset (2002–07) and

compared to the previous computation of BMA weights

in Roquelaure and Bergot (2008), which used a smaller

training data sample composed by two winter seasons

(2002–04). Section 4 describes the methodology adopted

to analyze the LEPS discrimination potential and sec-

tion 5 gives the results. Finally, section 6 summarizes the

results and presents the main conclusions.

2. The event-based climatology of LVP over
Paris-Charles de Gaulle Airport

a. The classification methodology: Fog types

The comprehensive fog-type classification, described

by Tardif and Rasmussen (2007), is applied to identify

the types of LVP events that commonly take place over

Charles de Gaulle Airport. A specific LVP climatology

for this airport location is then derived from the classi-

fication methodology. Five types of LVP events are

discriminated through the algorithm: precipitation fog

(PCP), radiation fog (RAD), advection fog (ADV),

evaporation fog (EVP), and lowering of the cloud base

(STL, low ceiling). Fog events that do not meet the

criteria used to classify events into the five previous

types, or those for which a condition has insufficient data

for validation, characterizing the few hours prior to fog

onset, are classified as unknown (UKN). The classifica-

tion is based on the hypothesis that the formation of

LVP events is driven by different physical mechanisms.

As a consequence, the algorithm’s goal is to identify the

primary mechanisms responsible for the formation of

each type of LVP event, via the use of simple conceptual

models of fog formation applied to local surface obser-

vations at the airport. PCP fogs are mostly driven by the

thermodynamical influence of evaporating precipitation

(Petterssen 1969). RAD fogs develop under strong

surface radiative cooling conditions (Meyer and Lala

1990; Baker et al. 2002). ADV fogs result from the
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mixing of air parcels of contrasting temperatures as

moist and warm air flows over a colder surface (Baars

et al. 2003). STL situations mostly occur under condi-

tions of moistening and/or cooling of the layer below

stratiform clouds and/or prolonged subsidence (Baker

et al. 2002). EVP fogs are induced by the evaporation of

surface water and mixing in the surface layer (Arya

2001). For more details on the classification and the

simple conceptual models used, see Tardif and Ras-

mussen (2007). Compared to the hourly surface ob-

servations used in Tardif and Rasmussen’s study, here

6-min local surface observations of visibility, tempera-

ture, wind, precipitation, cloud cover, and ceiling height

are used for the classification. This high frequency of

observations is clearly a great advantage in classifying

the fog types, especially for short events, which can be

totally missed with hourly data.

b. The classification results over Charles de Gaulle
Airport

Table 1 shows the results of the LVP-type classifica-

tion for Paris-Charles de Gaulle Airport. All winter

seasons are composed of 5 months of data. However,

during the first year of a data record, the observation

measurements were started in December and as a con-

sequence winter 2002/03 is composed of 5 months from

December to April. Whereas, the other winters (2003–

07) used data from October to February. Over the five

winter seasons of the dataset, stratus base lowering

events represent 43% of the LVP cases, radiation fog

events count for 28%, and advection fog events for 7%.

Precipitation and evaporation fog events are observed

for, respectively, 8.4% and 0.6% of the LVP cases.

Thirteen percent of the LVP cases cannot be discrimi-

nated by the algorithm and are classified as unknown.

Table 1 reveals the annual variability in observed LVP

cases by looking at the results year by year. While the

winter seasons from 2004 to 2007 have a total of about

30 LVP cases during each winter, with roughly the same

frequency of LVP-type occurrences, 52 LVP cases are

observed during winter season of 2003/04, which also has

a twofold increase in the frequency of observations for

STL, RAD, and PCP. The main differences between the

winter season of 2002/03 and the other winters are due to

the fact that the 5 months used from winter 2002/03 are

from December to April, compared to October until

February in the 2003–07 data. By starting the observa-

tion in December, the October and September fog cases

are missed in the 2002/03 winter.

3. The Local Ensemble Prediction System

a. LEPS methodology

LEPS is built around the Code de Brouillard à l’Echelle

Locale (COBEL, local-scale fog code) and Interaction

Soil–Biosphere–Atmosphere (ISBA) local prediction

scheme. The COBEL–ISBA initial conditions and me-

soscale forcings are perturbed to obtain a 54-member

ensemble (Roquelaure and Bergot 2007, 2008). The local

numerical prediction method is currently used at Charles

de Gaulle Airport to produce deterministic forecasts of

LVP conditions over the airport. The 1D high-resolution

COBEL atmospheric model (Bergot 1993; Bergot and

Guédalia 1994) is coupled with the multilayer surface–

vegetation–atmosphere transfer scheme of ISBA (Boone

et al. 2000). The COBEL–ISBA initial conditions are

estimated using a 1D variational data assimilation sys-

tem (1DVAR; Bergot et al. 2005). The system uses

specific observations from a 30-m-high meteorological

tower (atmospheric temperature and humidity, and

short- and longwave radiation fluxes) and soil mea-

surements. The mesoscale influences are treated by

external forcings. The mesoscale forcings (mesoscale

advection, geostrophic wind, and cloud cover) are eval-

uated from the Météo-France operational NWP model

Aladin (information online at http://www.cnrm.meteo.fr/

aladin/).

The COBEL–ISBA inputs are the atmospheric tem-

perature and humidity profiles from the 1DVAR sys-

tem, the geostrophic wind profiles, the advection profiles,

the cloud cover, the soil temperature, and the soil water

content profiles. The model computes the following out-

puts within the boundary layer: the atmospheric tem-

perature and humidity profiles, the wind profiles, the

turbulent kinetic energy profiles, and the atmospheric

cloud liquid water content from which the visibility is

diagnosed.

b. LEPS perturbations: Computation of the
uncertainties

The computation of the mesoscale forcing uncer-

tainties is based on a spatiotemporal strategy, under the

hypothesis that uncertainty is correlated with the ‘‘in-

trinsic’’ variability of the 3D NWP model Aladin. The

TABLE 1. Number of LVP events per winter and per type.

No. of LVP events per winter per type

Winter season STL RAD ADV UKN PCP EVP Total LVP

2002/03 12 4 1 0 1 0 18

2003/04 20 18 2 4 7 1 52

2004/05 14 6 3 3 1 0 27

2005/06 10 8 2 6 1 0 27

2006/07 11 7 3 7 3 0 31

Total (2002–07) 67 43 11 20 13 1 155
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model variability is assessed in both space and time. The

spatial variability is evaluated by comparing the forecast

over an area of 3 3 3 grid points. This area is repre-

sentative of the homogeneous surface conditions around

the study area. The temporal variability is evaluated by

comparing four Aladin runs (0000, 0600, 1200, and 1800

UTC) for the same verification time. At the end of this

two-step procedure, the variability in both space and

time is used to estimate the distribution of uncertainties

on mesoscale forcings. Following this method of com-

puting the uncertainties on mesoscale forcings, the

horizontal temperature and humidity advections and the

geostrophic wind are perturbed to produce the ensem-

ble. The cloud cover is also perturbed by including

members following three different scenarios: no cloud

cover at all, cloud cover from the NWP model Aladin,

and the persistence of the observed cloud cover. Initial

condition uncertainties are estimated from observation

errors in the soil and the lower part of the atmosphere

where site observations are available (below 30 m). At

higher elevations, the output from NWP model Aladin

are used to provide both temperature and humidity

profiles. As a consequence, uncertainties can be assessed

with the spatiotemporal methodology described above

for mesoscale forcings. The perturbed initial conditions

in the ensemble are for the temperature and humidity

profiles in both the atmosphere and the soil as well as the

cloud initialization. For the cloud initialization, un-

certainties are included on the cloud liquid water con-

tent and the cloud base or cloud top. For more details,

see Roquelaure and Bergot (2008).

At the airport location, the impacts of these uncer-

tainties on COBEL–ISBA forecasts have been evalu-

ated during the 2002/03 winter season (Roquelaure and

Bergot 2007). The study has shown the time dependency

of the forecast dispersion. The impacts of uncertainties

on the initial conditions decrease during the first hours of

the simulation (0–6 h), whereas the dispersion created

by mesoscale forcings becomes more important in the

second half of the simulation (6–12 h). The cloud radi-

ative impacts on the dispersion are felt throughout the

12-h forecast period. The uncertainties on the low-cloud

initializations also act upon the 12-h forecast period.

c. LEPS calibration

The calibration technique for LEPS follows the BMA

method described by Raftery et al. (2005). The BMA

approach is applied on a training dataset (winter seasons

from 2002/03 to 2006/07) to determine which members

are the most efficient for the prediction of any quantity

X, which is the LVP in our case. Therefore, the BMA

calibration is applied on the LVP variable without any

consideration of the LVP type. Thanks to the learning

over the training dataset, the BMA method assigns

a weight to each member to improve the ensemble’s

reliability. As a consequence, each member is clearly

identified and has its own characteristics. If K members

are available in the training dataset XT, BMA takes into

account all members to learn about each member’s ef-

ficiency in forecasting the variable X (see Roquelaure

and Bergot 2008 for more details). The strengths of the

BMA method are the robustness of the weight compu-

tation algorithm and its simplicity in cases of binary

forecasts, as is the circumstance here. Actually, since we

have to predict a binary variable, the LVP distribution is

discrete (two values: 1 or 0) and there is no variance of

the distribution to compute.

The weaknesses of the method are the possible over-

fitting and the colinearity between ensemble members

over the training data (Wilson et al. 2007; Hamill 2007).

Overfitting occurs when the training data sample is too

small and the colinearity occurs when there is too much

dependency between the ensemble members. Never-

theless, despite the overfitting due to the size of the

training data sample and some colinearity between

members, the BMA calibration has proven to be effec-

tive in LEPS and has improved the ensemble reliability

(Roquelaure and Bergot 2008).

d. Validation of the BMA calibration over a longer
training period

In Roquelaure and Bergot (2008), the training period

was composed of two winter seasons, from 2002 to 2004,

and the BMA weights were computed over this period.

This present study takes advantage of the overall data

sample (five winters) to compute the BMA weights,

in order to give more robustness to the calibration by

reducing the overfitting and colinearity between the

members. The Brier score (BS; Brier 1950) and its de-

composition into resolution, reliability, and uncertainty

are going to be used for the verification.

Figure 1 shows that the calibration over five winter

seasons gives similar Brier scores (Fig. 1a) and reliability

scores (Fig. 1b) compared with the calibration over two

winter seasons. In both cases, the BMA weights (not

shown) are comparable and explain the same patterns of

behavior observed in the reliability scores in Fig. 1b.

Consequently, at least for the local area around Charles

de Gaulle Airport, two winter seasons of data are suf-

ficient to compute efficient BMA weights necessary to

calibrate the local ensemble. This improvement im-

proves the ensemble reliability by the BMA calibration

and demonstrates adequate ensemble sampling. In ac-

tuality, an inappropriate ensemble sampling would not

have improved the ensemble reliability. Thus, the BMA

calibration is able to capture the main ensemble member
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contributions on the short 2-yr dataset as well as on

a longer training dataset of five winter seasons. More-

over, cross-validated forecasts and verifications, using

permutations of two-winter seasons to compute the

BMA weights applied to a third independent winter,

give similar results (not shown). As a consequence, the

same 5-yr dataset is used for both calibration and vali-

dation in this study to take advantage of the full data

training sample.

Table 2 presents the annual variability of the re-

liability and the resolution parts of the Brier score de-

composition as well as the Brier score itself along with

the uncertainty. In addition, as shown previously in

Table 1, the winter seasons in the dataset do not have

identical LVP event frequencies of occurrence. As

a consequence, the mean results over the 12-h forecast

period reveal the interannual variability of the Brier

score, the resolution, the reliability, and the uncertainty

(i.e., the probability score of the climatology). The per-

centages of variability of the BS, resolution, reliability,

and uncertainty are 27%, 25%, 33%, and 23%, re-

spectively (see Table 2).

4. Dataset and methodology

a. Methodology of analysis

Within an operational context, for most of the LVP

cases, forecasters know which LVP type of event is going

to occur but with some uncertainties. Forecasters may

need to know the behavior of LEPS, or need to un-

derstand on which situations the system is doing well or

poorly. Since LEPS is not able to discriminate LVP

event types, the system only provides the overall LVP

probability of occurrence (i.e., calibration performed for

the LVP variable). The main goal of this study is to

analyze the manner in which LEPS skill depends on the

LVP event type in order to understand its predictive

strengths. The analysis is performed only on observed

LVP cases during the five winters of data to avoid the

numerous numbers of days where no LVP occurred and

good ‘‘no–no’’ forecasts were issued all day long (when

no LVP is observed and no LVP is predicted). The only

point of interest is the skill level of the local ensemble

for these observed LVP cases (or dates); therefore, the

skill level is conditional on the observed LVP type. As

a result, the reason why incorrect forecasts are issued

when LEPS predicts unobserved LVP events is not

addressed in this present study; and should be addressed

in the future.

TABLE 2. Variability of the scores over the five winter seasons

from 2002 to 2007. The mean of the five winter seasons of the Brier

score, the resolution, the reliability, and the uncertainty has been

computed, as has their related standard deviations as a function of

the forecast time and their mean results over the 12-h forecast

period.

Score

Mean scores over the 12-h forecast period

Mean score

Mean std dev

of the score

Mean std dev

of the score (%)

Brier score 0.049 0.013 27

Resolution 0.016 0.004 25

Reliability 0.006 0.002 33

Uncertainty 0.060 0.014 23

FIG. 1. (a) Brier score and (b) reliability for the five winter seasons from 2002 to 2007 for the

uncalibrated ensemble (dotted line), LEPS calibrated for two winter seasons (2002–04) of data

(dashed line), and LEPS calibrated for five winter seasons (2002–07) of data (solid line). In

(a), the uncertainty (gray dashed–dotted line) is the probability score of the climatology.
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Thus, if a radiation fog event is observed at the airport

during the night of 29–30 of December between 2000

and 0300 UTC, these will be the dates–times selected for

the analysis. Within 24 h of the selected dates, errors in

the forecasts occur when LEPS predicts the onset of the

LVP event earlier than the observations or when the

LVP event dissipates later than in the observations.

Within this context of fog prediction, the limits of pre-

dictability are rapidly reached because of the small

spatiotemporal scales involved in a fog event’s life cycle.

So, only very short-term or, at best, short-term pre-

dictions are conceivable for producing accurate and

reliable fog forecasts. Since the methodology of the

analysis focuses on the very short-term forecast, three

initialization times are used to analyze the skill level for

a LVP event:

d I0 is the initialization time when the LVP event is ob-

served by the on-site measurements and initialized in

the ensemble runs. The goal is to evaluate the prediction

skill of initialized events as well as the LVP dissipation

times for events whose life cycles are under 12 h.
d I3 covers the previous initialization times, respec-

tively, 3 h before the I0 runs. The LVP is observed at

the airport site during the first 3 h of the simulation.

As a consequence, it is not initialized in LEPS and

should be forecasted by the system at between 3 and

12 h of forecast time. This 3–12-h prediction interval is

analyzed to assess the prediction skill of noninitialized

events.
d I6 is the run that is 6 h before I0. The LVP event is

observed and should be forecasted in the second half

of the simulation (6–12 h). The focus is also on pre-

diction skill of noninitialized events but for longer-

term forecasts.

Actually, in these I3 and I6 runs, LVP should be pre-

dicted by the model after, respectively, 2–3 and 5–6 h

of model integration. These runs evaluate the quality of

the prediction of the fog formation time and the skill of

the system in forecasting the development of LVP

events. Our analysis will then focus on forecast times

between 3 and 12 h in I3 and forecast times between 6

and 12 h in I6.

b. Scores used in the analysis

The skill levels of LEPS for the observed cases are

evaluated by comparing the hit rates (HRs) and the

false alarm rates (FARs) of the LVP events for the

reference deterministic run, the ensemble mean solu-

tion, and the ensemble probabilistic forecasts. If we

define a as the number of both observed and correctly

forecasted events, b as the number of not observed but

forecasted events, c as the number of observed but not

forecasted events, and d is the number of not observed

and not forecasted events, HR and FAR are given by

HR 5
a

a 1 c
; (1)

FAR 5
b

b 1 d
. (2)

The area under the ROC curve is also another mea-

sure of the system skill (Richardson 2000; Buizza 2001).

As a consequence, it is convenient to compute a so-

called ROC area score (ROCA), which is an integrated

score used to compare the skill levels of the various

LVP-type forecasts for I0, I3, and I6. The larger this area

is, the better the forecast skill. A perfect system has

a ROCA value of 1 while a system displaying no skill has

a ROCA value of 0. To further evaluate the skill of the

LVP system for fog-type forecasts in terms of a proba-

bilistic context, reliability and sharpness diagrams are

also used to assess the reliability and the distributions of

the probability for each of the three initialization times.

c. Dataset

Thanks to the LVP event classification, all the ob-

served LVP cases during winter seasons 2002–07 are

listed and classified into one of the six types defined in

section 2a: ADV, RAD, STL, PCP, EVP, and UKN.

LEPS has been run for the five winter seasons at a 3-h

data assimilation frequency, from December to April

for winter 2002/03, and from October to February for

the next four winters. Only the listed dates, identified by

the classification, and the three 12-h forecasts at ini-

tialization times I0, I3, and I6 are conserved for the

analysis. Forecasts and observations are compared on

1-h time intervals for the forecast validation. Thirty-six

minutes of LVP conditions have to be observed during

a 1-h window to define an observed LVP case.

5. Results

Precipitation fog results are not presented and not

discussed because PCP events are synoptically related to

cyclogenesis situations (Tardif and Rasmussen 2008),

which are not well described in a 1D local numerical

prediction approach. As a consequence, PCP fog events

are not well forecasted by COBEL–ISBA and therefore

not by LEPS. EVP cases, which are marginal LVP

events with the lowest observed frequency (0.6%), are

not discussed either. Results of UKN LVP events are

shown in all the figures but are not discussed since these

events cannot be clearly identified by the classification.

13% of the cases are categorized as unknown and should

be driven by a combination of phenomena, revealing the
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difficulties in forecasting some fog events. Three types of

LVP events account for 78% of the LVP dataset: stratus

lowering base (43%), followed by radiation (28%), and

then advection fog events (7%). As a consequence, the

discussion of the results is focused on these three types

of LVP events.

a. LEPS from the deterministic point of view

In this section, instead of viewing the LVP variable

as a disjointed event (i.e., fog and low ceiling) with yes–

no binary forecasts deduced from crossing the LVP

threshold, the LVP event is thought of as a continuous

event by considering the evolution of the cloud-base

height event. When the event cloud base is 0 m, a fog

event occurs and when the cloud base goes under 60 m

without going down to 0 m, a low-ceiling event occurs.

By using this interpretation of LVP, the mean forecast of

the ensemble can be defined as the mean cloud-base

solution from the ensemble members. This interpreta-

tion of the LVP variable gives a deterministic solution

for the mean solution of the ensemble, which can be

directly compared with the cloud-base height of the

reference run. Therefore, LVP events are predicted by

the mean of the ensemble when the mean cloud base of

the ensemble is less than 60 m. The type of LVP events

for the comparison between the ensemble mean and the

reference are also based on the classification described

in section 2.

1) RELATIVE OPERATING CHARACTERISTICS

Deterministic forecasts clearly facilitate the decision-

making process when these forecasts are highly accurate

and reliable. However, because of model and analysis

errors, deterministic forecasts are not infallible, espe-

cially in the case of predicting rare and sensitive events

like fog. For this reason, probabilistic forecasts are in-

creasingly used in meteorological fields. Nevertheless, it

is interesting to examine the skill of the ensemble ref-

erence forecast and to compare it with the mean forecast

skill of the ensemble. In the present section, the mean

solution of the ensemble is compared with the cloud-

base height of the reference forecast for the dates where

both the reference and the mean of the ensemble solu-

tions predict an LVP event for each type of LVP event

identified in the classification. Thus, the comparison

relies on the same number of cases because the refer-

ence solution discriminate more LVP cases than does

the ensemble mean (not shown).

Table 3 shows the percentage of LVP events predicted

by both the reference and the mean forecasts for each

LVP type and all initialization times: I0, I3, and I6.

Globally, between 8% and 75% of the cases are fore-

casted by both the reference and the mean. As expected,

the highest percentages of forecasted events are ob-

tained when LVP events are observed at the airport and

then initialized in the ensemble for I0 with about 70%

and the smallest percentages are for I6 with about 10%.

ROC curves in Fig. 2 rely on these cases for I0. Figures 2a

and 2b present the ROC curves and the ROC area

scores for the reference and the ensemble mean. The

ROC curves are a function of the forecast time. From

right to left on each curve, the mean results are pre-

sented for the four following forecast time periods: 0–3

(far right points), 3–6, 6–9, and 9–12 h (far left points).

Figure 2 shows the ROC curves and ROCA scores for

the various LVP types for the reference and the en-

semble mean when LVP events are initialized (I0). First,

Fig. 2 shows that the reference generally has a better HR

that does the ensemble mean. However, what the ref-

erence gains on the HR is lost in terms of the FAR as

compared to the ensemble mean. As a consequence,

STL and RAD have similar ROCA scores for both the

reference and the ensemble mean. For ADV, the en-

semble mean improves the forecast skill by 27% as

compared to the reference. For UKN, the ensemble

reduces the forecast skill by 46%. For I3 and I6 relative

operating characteristics, for both the ensemble mean

and the reference forecasts, the conclusions are similar

but the ROC curves are clearly less skillful as fewer

cases were predicted (see percentages in Table 3).

2) RELATIVE MEAN ERRORS IN LVP FORMATION

AND DISSIPATION TIMES

Figure 3 shows the relative mean errors on the for-

mation and dissipation times of each type of LVP event

predicted by both the reference (non boldface symbols)

and the ensemble mean (boldface symbols) forecasts

during the five winter seasons. For initialized RAD and

ADV events, the dissipation time is well forecast with

mean errors within a range of 61 h for both the reference

and the ensemble mean. The dissipation of STL is too late

by about 3 h for the ensemble mean and by 5 h for the

reference. The ensemble mean dissipates all types of LVP

events earlier than does the reference forecast, by about

2 h for STL, RAD, and UKN and by about 1 h for ADV.

TABLE 3. Percentage of LVP events predicted by both the ref-

erence run and the ensemble mean forecasts per LVP types over

the five winter seasons. All three Initialization times are shown

(I0, I3, and I6).

LVP events predicted (%)

Initialization time STL RAD ADV UKN

I0 63 79 54 75

I3 52 32 9 35

I6 37 14 9 20

DECEMBER 2009 R O Q U E L A U R E E T A L . 1517



For forecasts initialized 3 h prior to fog onset in Fig. 3b

(I3), the errors in the formation time are less than 1 h for

all of the events. The reference RAD dissipation is par-

ticularly good with unbiased results. The mean errors in

the dissipation for STL also decreased as compared to I0.

Once again, the ensemble mean dissipates earlier than

the reference runs, moving the errors closer to unbiased

predictions, with the exception of RAD fog events that

dissipate 3 h too soon. Note that ADV statistics are not at

all valuable since very few advective cases are forecasted

and mean dissipation errors are over 6 h.

For forecasts initialized 6 h prior to fog onset (I6),

LVPs form 2–3 h too early for both the reference and

the ensemble mean. The mean errors in the dissipation

time spread out with two distinct patterns of behavior for

the reference and the ensemble mean forecasts, which

FIG. 2. ROC curves for the (a) reference LVP forecast and (b) mean LVP ensemble forecast

over the five winter seasons for initialization time I0. The ROC curves are a function of the

forecast time. From right to left on each curve, the mean results for the four following forecast

time periods are shown: 0–3 h (indicated on the curves), then 3–6 h, 6–9 h, and 9–12 h (far left

points).

FIG. 3. Relative mean errors on the LVP formation and dissipation time as a function of the

type of LVP events and for the initialization times (a) I0, (b) I3, and (c) I6 over the five winter

seasons. Results are presented for all cases that are predicted by both the reference (non-bold

signs) and the mean (bold signs) LVP forecasts. Positive values mean a later formation–

dissipation and negative values mean an earlier formation–dissipation of the LVP event.
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respectively dissipate too late and too early within the

range of 13 h and 23 h. One can see that the dissipation

time of STL is well forecast in both the reference and the

ensemble mean, with less than 1 h of error. Again, ADV

statistics are not at all useful since very few advective

cases are forecasted and mean errors of the time of

ADV dissipation are over 6 h. The uncertainties in these

mean errors are independent of the type of LVP events

and the differences among various forecasts shown in

Fig. 3 are within the range of 1–3 h in the formation time

and 3–5 h in the dissipation time.

3) SUMMARY OF DETERMINISTIC FORECASTS

Results show that the reference generally has a better

HR than the ensemble mean. However, what the ref-

erence gains on the HR is lost in term of the FAR as

compared to the ensemble mean. STL and RAD have

similar ROCA scores for both the reference and the

ensemble mean. For ADV, the ensemble mean im-

proves the forecast skill by 27% as compared to the

reference. For UKN the ensemble reduces the forecast

skill by 46%. Results also show that radiation fog events

are well forecasted by the reference run whatever the

initialization time. This result is not surprising for two

reasons. First, the COBEL model design takes advan-

tage of a high vertical resolution grid, which is important

for adequately forecasting radiation fog development

and burnoff. Second, the model also includes a very

detailed description of longwave radiation (Vehil et al.

1989), which has a 232 spectral intervals between 4 and

100 mm to evaluate the surface radiative cooling, and

the hypothesis of horizontal homogeneity made in the

1D model design is more sustainable in the case of RAD

fog events.

Long-range prediction of STL (I6) is also extremely

skillful with less than 1 h of error in the burnoff time for

both the reference and the ensemble mean forecasts.

ADV dissipation is well forecast when fog events are

observed at the airport and initialized in the ensemble

runs (I0) with mean errors on burnoff time in the range

of 621 h.

b. LEPS from the probabilistic point of view

The Local Ensemble Prediction System skill is now

assessed with ROC curves and the computation of the

ROC area, which give a score to compare the prediction

skill of LVP types. The following probability thresholds

are plotted: P . 90%, .70%, .30%, .10%, and .0%.

Since fog events have low climatological frequencies,

sample size is a concern. As a result, reliability and

sharpness diagrams are also presented to evaluate the

sample sizes of the datasets for the different fog types.

1) I0: LVP FORECAST SKILL WHEN EVENTS ARE

OBSERVED ON THE AIRPORT AND INITIALIZED

IN THE ENSEMBLE RUNS

For initialized LVP events, the ROCA scores reveal

that the skill of the ensemble for STL, RAD, and ADV

are all around 0.7 (Fig. 4). The skill, for STL, is 8% and

5% better than that of RAD and ADV, respectively.

ADV events are well forecasted by LEPS when they

are initialized and the skill is even 3% greater than for

RAD over the 12-h forecast period. The reliability and

sharpness diagrams in Fig. 5 show that the reliability is

satisfactory for all types of LVP events, even if LEPS has

been calibrated for the LVP variable.

2) I3 AND I6: LVP FORMATION–MATURATION

FORECAST SKILL AND LONG-RANGE FORECAST

OF NONINITIALIZED LVP EVENTS

With runs I3, 3 h before the initialized ones I0, LVP

onsets should have been forecast after 2–3 h of simula-

tion. Analyzing the forecast between 3 and 12 h provides

an indication of LEPS’s skill for the formation–maturation

phase as well as the dissipation phase for events shorter

than 9 h. Figure 6 shows that STL and RAD retain about

the same level of skill as in I0 with ROCA scores of 0.7.

For ADV, LEPS’s ROCA score decreases by 43% and

falls to 0.4. Figure 7 shows than the sample size becomes

the main issue and that only STL still have enough cases

to construct a good reliability diagram and LEPS tends

to underpredict LVP events. ADV events are forecasted

only with probabilities under 10%.

FIG. 4. ROC curves for the initialization time I0. The mean re-

sults over the 12-h forecast period of the simulation are shown. The

points on the curves are for the following probability thresholds

from left to right: P . 90%, .70%, .30%, .10%, and .0%. The

ROCA is also presented for each type of LVP event.
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Longer-range forecasts of noninitialized LVP events

(I6) lead to similar conclusions to those with I3 except

that the scores are lower (not shown). Longer-range

forecasts for I6 yield smaller ROCA scores than I3. For

STL and RAD events, the scores decrease by 10% and

23%, respectively, and ADV possesses almost the same

level of skill as in I3 with a ROCA of 0.42. Reliability

and sharpness diagrams reveal that fewer cases than I3

are forecast by LEPS 6 h before the onset of fog events.

As a result, LEPS forecasts become bimodal with either

probabilities under 40% or probabilities over 70% (also

not shown). Low probabilities are much more frequent

than high probabilities for long-range forecasts and low

probabilities underestimate the observed frequencies,

while high probabilities tend to overestimate the ob-

served frequencies of LVP events.

3) SUMMARY ON PROBABILISTIC FORECASTS

The use of probabilistic forecasts imposes a decision-

making procedure (actions) that is not an easy task to

accomplish successfully. The user has to define a proba-

bility threshold that is linked to an HR and an FAR.

However, ensembles are designed to assess predictability

and one of the basic characteristics of an ensemble is

that the ensemble predictions spread out as the lead

time increases. As a consequence, high probabilities

are only obtained for short-term forecasts. Therefore,

the user has to define probability thresholds following

the type of event to be predicted as well as the forecast

ranges that are to be covered. The longer the forecast

range is, the lower the probability threshold needs to

be. Or, the higher the HR is required to be, the lower

the probability threshold needs to be.

Regarding LEPS skill as related to LVP types, Fig. 8

summarizes the ROC curve when an HR over 50% is

required. The specific skill of each type of LVP is pre-

sented with the associated probability thresholds and

FAR, which would allow for the detection of at least

50% of the events. STL achieves the highest level of skill

among the main three types of LVPs for all initialization

times. ADV and RAD have similar skill aptitudes for

initialized cases. However, LEPS loses a significant

amount of skill for the prediction of noninitialized

ADV events. As mentioned previously, high probability

thresholds are obtained for I0 because, for this initiali-

zation time, LVPs are observed at the airport and there-

fore are initialized in the ensemble members. For an HR

threshold above 50%, the probability criterion should be

FIG. 5. Reliability and sharpness diagrams for the initialization

time I0 (mean result over the 12-h forecast period). Results are

shown for 20% probability bins.

FIG. 6. As in Fig. 4, but for initialization time I3 with the mean

result presented over 3–12 h.

FIG. 7. As in Fig. 5, but for the initialization time I3 with the mean

result over 3–12 h of the forecast.
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relaxed for noninitialized runs I3 and I6; however, this

will lead to an increase in the FAR.

Although, a 5-yr dataset has been used in the study,

the results suffer from undersampled fog-type events.

However, LEPS skill has been assessed for different

LVP events that occurred at the Paris airport. One in-

teresting result is that this local approach is able to pro-

vide valuable forecasts of advection fog events when the

ensemble runs start with the initialization of the advec-

tion fog events. Even if advections are three-dimensional

processes, the local influences of these mesoscale advec-

tions are treated by the local ensemble when ADV events

are initialized. Therefore, we are able to obtain satisfac-

tory results for the dissipation times of ADV events.

6. Conclusions

The LVP-type dependent skill of the Local Ensemble

Prediction System has been assessed in this study to

determine the skill of the system for various types of

LVPs at Paris-Charles de Gaulle Airport. During the

forecasting process, forecasters can identify the types of

events occurring at the airport, which is not possible in

LEPS. So, this study gives some insights into the sys-

tem’s performance for each type of LVP.

An interesting result of the LEPS calibration process

(in section 3) demonstrates that the calibration is as ef-

ficient with two winters of data as with 5 winters of data.

Thus, LEPS can be calibrated on short training samples

and can still produce skillful forecasts, which is not the

case in traditional 3D ensembles that require decades of

data. The BMA calibration is very convenient in this

local approach as it is applied to a single prediction

threshold. As a result, each forecast solution is binary

(1 if LVP is predicted and 0 if LVP is not predicted).

Thus, the BMA is able to learn the main characteristics

of the ensemble members and to assign to each mem-

ber a specific weight that defines its ‘‘identity.’’ There-

fore, when the ensemble is correctly sampled (i.e., the

main sources of uncertainty are correctly described), the

BMA improves the ensemble reliability, as has been

shown in Roquelaure and Bergot (2008). Also shown in

a previous LEPS paper by the present authors (2007),

the first half of the run (0–6 h) is dominated by the un-

certainty of the initial conditions and the second half

(6–12 h) of the run by the uncertainty of the mesoscale

forcings (e.g., advection, cloud cover).

Ensembles produce very large datasets that can be

used not only as forecast tools but also for diagnostic

purposes. Here, the local ensemble is used in a very basic

way, in the sense that its forecasting skill is assessed

through the reference, the ensemble mean (the mean

cloud-base solution of the ensemble), and the ensemble

probabilistic forecasts for each type of LVP identified at

the airport site. The LVP-type identification has been

carried out by using the classification algorithm of Tardif

and Rasmussen (2007). The results show that 78% of the

LVP dataset is dominated by three types of LVP events:

FIG. 8. Schematic summary of the ROC curves. By selecting a criterion of protection–prevention for HR . 50%. The skill levels of all

types of LVP events are indicated for all initialized runs (I0, I3 and I6), as well as the corresponding FAR and probability thresholds.
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stratus lowering base (43%), radiation (28%), and ad-

vections fog events (7%).

The reference and the ensemble mean forecast results

show the following:

1) Among all LVP type events, STL forecast skill is the

highest for both the reference and the ensemble

mean and ADV events are the most difficult to

forecast.

2) The reference is very skillful for RAD fog prediction,

which is not a surprise because COBEL has been

designed to focus on radiation processes.

3) The relative mean forecast error of the LVP event

formation time is under 2 h, which is in agreement

with results of Bergot (2007).

4) The relative mean forecast error for LVP burnoff is

generally under 3 h, which is also in agreement with

the results in Bergot (2007).

LEPS probabilistic forecast results show the following:

1) The highest skill level is found for the prediction of

RAD fog. This result can be explained by the design

of COBEL, which focuses on representation of ra-

diation processes.

2) STL events are also particularly well forecasted, es-

pecially for long-range forecasts; this is largely be-

cause of the low cloud initialization procedure, which

initializes the clouds in all of the ensemble members.

When the various scenarios spread out, the ensemble

manages to encompass reality.

3) ADV fog prediction shows considerable skill but

only for the initialized runs. This can be explained by

the fact that perturbed advection members in the

ensemble have significant weights in the ensemble

calibration, which has a significant impact on the

initialized fog events (Roquelaure and Bergot 2008).

However, advections are three-dimensional phe-

nomena and noninitialized ADV events are not well

forecasted in the 1D modeling approach.

It is always necessary to keep in mind that probabilistic

forecasts are user dependent. The choice of the criterion

of protection–prevention actions depends entirely on

the user’s needs. One of the simple rules for under-

standing LEPS may be that the longer the forecast range

is, the lower the probability threshold needs to be. Or,

the higher the HR is required to be, the lower the prob-

ability threshold needs to be.

In conclusion, the LVP climatology, as well as the

frequency of occurrence of each LVP event type, has

been defined at Charles de Gaulle Airport. From 6 h

before the initialization of LVP through COBEL–ISBA

assimilation procedure, LEPS is able to produce skillful

forecasts for stratus base lowering cases, and advection

and radiation fog events, which represent 80% of the

LVP cases in the five-winter training dataset. Via this

study, forecasters can understand how LEPS will per-

form with respect of the type of LVP event to be fore-

cast. This information is useful for forecasters who will

be able to adequately use LEPS following its strengths.
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