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SUMMARY

A new adjoint-based method to find the optimal deployment of targeted observations, called Kalman Filter
Sensitivity (KFS), is introduced. The major advantage of this adjoint-based method is that it allows direct
computation of the reduction of the forecast-score error variance that would result from future deployment of
targeted observations. This method is applied in a very simple one-dimensional context, and is then compared to
other adjoint-based products, such as classical gradients and gradients with respect to observations. The major
conclusion is that the deployment of targeted observation is strongly constrained by the aspect ratio between
the length-scale of the sensitivity area and the length-scale of the analysis-error covariance matrix. This very
simple example also clearly illustrates that the reduction of forecast-error variance is stronger for assimilation
schemes which have a smaller characteristic length-scale. Finally, the KFS technique is applied in a diagnostic
way (i.e. once the observations are done) to four FASTEX cases. For these cases, the reduction of the forecast-
error variance is in agreement with the efficiency of targeted observations as previously studied. A preliminary
step towards an operational use has been performed on FASTEX IOP18, and results seem to validate the KFS
approach of targeting.

KeEywoRDS: Adjoint methods Kalman filter Predictability

1. INTRODUCTION

The forecast of some meteorological events (like rapid cyclogenesis) remains a
difficult problem, even at short range (typically 12-48 h). These situations are often very
problematic for the forecasters and can, moreover, have a dramatic socio-economical
impact. Even if the model can simulate the evolution of the atmosphere perfectly, errors
in the initial conditions may amplify rapidly and degrade the forecasts. These errors
in the initial conditions are a consequence either of the errors in the observations,
or of the inhomogeneous observational network (areas with insufficient or inaccurate
observations), or of the assimilation scheme which transforms the observations into
model initial conditions.

In order to try to improve the forecasting of such events, a new observational strat-
egy, called adaptive or targeted, has been proposed. The principle is to add an adaptive
component to the conventional network of observations. Adaptive observations are in-
tended to reduce the forecast-error variance of a forecast with a high potential socio-
economic impact. It is adaptive in the sense that the locations of these measurements
vary from day to day. The problem is then to locate the targeted observations, in an
optimal way (in the sense of lowest cost or minimum number of observations versus
maximum improvement of the forecast). The forecast errors, in a perfect model context,
are a consequence either of errors in the initial conditions, or of initial-error growth.
During the past years, several solutions have been suggested for finding the optimal
locations of adaptive observations and thus to define targeting strategies, and these
strategies have been tested during the Fronts and Atlantic Storm-Track EXperiment
(FASTEX) field experiment (Emanuel and Langland 1998; Joly et al. 1999), the North
Pacific Experiment field experiment (Langland et al. 1999a) and the US Winter Storm
Reconnaissance program (Szunyogh et al. 2000).
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The first method is based on an estimation of the uncertainty in the analyses and
on an estimation of the time evolution of this uncertainty with an ensemble of forecasts
(ensemble transform technique, Bishop and Toth 1999). The main goal is to find the
location of observations that will minimize a given norm of the forecast-error variance
inside a verifying area. This method combines both the statistical distribution of the
errors and error growth (represented by the evolution of the ensemble of forecasts).
However, this technique does not take into account the fact that observations have to
go through the data assimilation processes to produce initial conditions. Moreover, the
efficiency of targeted observations strongly depends on the assimilation scheme (Morss
1999; Bergot 2001). A new method, called Ensemble Transform Kalman Filter (ETKF),
has been recently proposed by Bishop et al. (2001), and has been used during the Winter
Storm Reconnaissance Program 2000 and 2001. Majumdar et al. (2001) have tested the
ability of the ETKF to quantitatively estimate the reduction in the forecast-error variance
with the National Centers for Environmental Prediction (NCEP) operational forecast
model.

The second method focuses on initial-error growth and is based on adjoint products
(Palmer et al. 1998; Bergot et al. 1999; Gelaro et al. 1999; Langland et al. 1999b).
This method relies on the fact that the initial errors in an unstable subspace of small
dimension play a key role in the forecast errors. If small errors exist in these unstable
directions, they will rapidly grow and degrade the forecast. The idea is then to con-
centrate observations inside the sensitive area, in order to minimize the initial error. To
take the assimilation processes into account, the sensitivity to observations has been
constructed (Baker and Daley 2000; Doerenbecher and Bergot 2001). However, these
sensitivity fields do not indicate where initial errors are, they only suggest where ob-
servations may have a big effect on the forecast. These adjoint-based strategies include
only a little information about the probable location of the initial errors. Moreover, some
studies have shown that it is important to take into account the statistical distribution of
the errors, even if the dynamical processes prevail in the forecast-error growth (Lorenz
and Emanuel 1998; Morss et al. 2001).

To take this fact into account, a new simple method, based on sensitivity and called
Kalman Filter Sensitivity (KFS), is proposed. Also tested in a simple context is how
this method can take into account the assimilation process, the expected quality of the
analysed field, and the way these uncertainties can be propagated by the atmospheric
dynamics (sections 3 and 4). And finally, this method will be illustrated in FASTEX
cases (section 5).

2. FORMULATION OF THE PROBLEM

The sensitivity of one aspect of the forecast to initial conditions has been the subject
of many studies during the past years (Rabier et al. 1996; Errico 1997). The classical
framework of these studies was to determine the variation of a forecast aspect J as a
function of the modification of the initial conditions x5(z0). However, the sensitivity
fields do not indicate the likely location of initial errors, they only suggest where to
look for initial conditions that may have a big effect on the forecast. The impact of
observations on the forecast is the combination of the sensitivity and the initial errors,
and the observations that give the maximum impact are not necessarily located in the
area with the highest sensitivities (Doerenbecher and Bergot 2001). Since one cannot
determine the amplitude of the initial error before the observations are done, and since
analysis errors partly arise from unknown errors in the measurements, it seems natural
to include the statistical distribution of the analysis errors in an operational targeting
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context. Berliner et al. (1999) have formulated the targeted-observations problem in
a rigorous statistical framework. However, the proposed optimization is virtually in-
tractable in very high-dimensional problems, such as an operational numerical weather
forecast model. The aim of this section is to describe a simplified method, based on
sensitivity fields, on statistical distribution of the errors, and on the assimilation scheme.

(a) Estimation of the variance of a forecast score

In the adaptive observation problem, it is crucial to provide an estimate of the
reduction of the forecast-error variance due to the inclusion of targeted observations. An
approach, in theoretical study, to evaluate this forecast-error variance is to use a Kalman
filter, and to try to minimize some components of these forecast-error variances (for
example, the sum of the forecast-error variance at different points of interest). However,
a key difficulty is that the computation of such a criterion is impossible in current
numerical weather prediction models, and numerical simplification and/or dimension
reduction have to be performed.

Let xirue(2) be the true state of the atmosphere at time ¢, and let x,(¢) be the state
vector at time ¢ resulting from the assimilation process, and x(z) a forecast at time ¢. Let
t0 be the initialization time and ¢1 be the final, or verification, time at which a forecast
aspect J was computed. Let us define a forecast score S, depending on J:

S =J(x(t1)) — J (Xtrue(11)). 1)

It is proposed to compute the variance of the forecast score S. This variance gives
us an estimate of the predictability of J at time ¢1, and is given by

(05)° = (T ¢(1D) — J (ke (D))Z — T D) — T (arue (D)) )

The first step is to evaluate the second term of Eq. (2) and therefore to calculate the bias
of S at time 1. This bias is given by

S = J(X¢(t1)) — J (Xrue (11)). ©)

Following the first-order expansion of J, the bias is estimated under the linear hypothe-
sis by

S > (dJ/dx(tD)T - (X(t1) — Xyrue (1)). (4)

If the forecast model M is perfect, then Xiye(t1) = MXyue(20). Let M be the linear
approximation or tangent linear model of the forecast model M, and M T the adjoint
model. Then, the first-order approximation of the bias of S is given by

S~ (MTdJ/dx(t1))T - (Xa(t0) — Xirue(10)). 5)

Following the classical notations of sensitivity studies, one notes the sensitivity field
VyJ = MT dJ/dx(r1). The adjoint model is based on a trajectory, issued from a nonlin-
ear run. As long as the change to this trajectory evolves nearly linearly between 0 and
t1, the gradient field remains basically unchanged (Harrison et al. 1999; Baker 2000).
Consequently, M T d.J /dx(z1) would not change substantially, and the assumption that

MT dJ/dx(r1) =M T dJ/dx(r1)

seems reasonable. Under this hypothesis, the bias S at time 71 may be written in the
form

S~ (VXJ)T - (Xa(t0) — Xirue(10)). (6)
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Given the fact that the analysis is an unbiased process, (Xa(r0) — Xirue(#0)) =0, and
consequently the statistical distribution of S is non-biased:

S=o. @)

Given Eq. (7), the second term of Eq. (2) is zero, and following the previous notations
and hypotheses, the variance of S at time ¢1 can be written in the form

(05)> ={(Vx)T - (Xa(t0) — Xtrue (10))}2. (8)
This expression can be developed into

(05)% = (VxJ)T - (Xa(10) — Xtrue(10)) (Xa(70) — Xtrye (r0))T - Vi J. 9)

Using the mathematical definition of the analysis-error covariance matrix A, the
variance of the score at time 1 may be written in the generalized form (see also the
demonstrations done in Baker (2000) and Bishop et al. (2001))

(05)% = (VxJ)T-A- Vyd. (10)

Given the statistical distribution of the initial error (due to errors in the background
field and errors in the observations), and the dynamical properties of the atmosphere
(represented by the sensitivity field), one can easily determine the variance of a score §
of one aspect J of the forecast at verification time.

(b) Minimization of the variance of a forecast score

In adaptive observations, one generally considers the observational network to
be composed of a routine or conventional network (denoted by a subscript c) and
an adaptive or targeted component (denoted by a subscript t). Let A; (respectively,
Ac+t) be the analysis-error covariance matrix, given by the assimilation of conventional
observations (respectively, conventional and targeted observations). Following Eq. (10),
the variance of the score of the forecast at verification time ¢1 for the combined
conventional and adaptive observations is given by

(052 = (V)T Agye- V. (11)

If the errors of the targeted observations are uncorrelated with errors in the conventional
observations, the covariance matrix of analysis errors issued from the assimilation of
both conventional and targeted networks is given by

Acrt= (BT +HIRH: + HIR THY 2, (12)

where B and R are the background-error covariance matrix and the observation-error
covariance matrix, respectively; H is the linear observation operator, which interpolates
from model to the observation space; note that we suppose here that these matrices are
accurately specified.

Using the Sherman-Morrison-Woodbury formula, one may rewrite Act as a
function of the statistical characteristic of both conventional and targeted observations:

Acit=Ac — AcH{ (Ry + HIACHD) TTHIA... (13)

Substituting Eq. (13) in Eg. (11), one can decompose the variance of the score into two
terms: the first one concerns the effect of the conventional network of observations, and
the second term represents the effect of the targeted observations, given the conventional
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observations and the assimilation scheme
(052 = (V)T Acyr- Vid
= (V)T {Ac — AcH{ (Ry + HIACH]) TTHAC) - Vi d
= (052 — (Vx)T - AcH{ (Rt + HIAH]) TTHAG - Vil (14)

Therefore, the reduction in the variance of the score, due to the inclusion of the targeted
observations, is given by

(605)2 = (Vad)T - AcH{ (R + HAH]) “THIA - V. (15)

This expression allows a quantitative prediction of the reduction of the forecast-error
variance in the unstable direction of the sensitivity field to be made, provided that the
error covariances are accurately specified and that the errors evolve linearly. Inaccura-
cies in error covariances that are specified by the assimilation scheme can lead to errors
in the estimations of the forecast-score variance. However, this remark is valid for all
studies which aim at estimating the forecast-error variance (see also Majumdar et al.
2001). One hopes that substantial effort will be made in the near future to improve
estimates of the background-error covariances, and therefore to increase the relevance
of this kind of study. It should also be noted that Eq. (15) focuses on the variance of the
forecast error in the direction given by the sensitivity. Therefore, as for studies based
on sensitivity fields, one focuses on one given aspect of the forecast, J. The goal is to
reduce the variance of the score given by this forecast aspect. This kind of approach is
in agreement with the targeted observation concept: when a meteorological event with
a possible high socio-economic impact is forecast, the forecaster defines the forecast
aspect associated with this socio-economic impact (strong wind, rainfall, and so on),
and Eq. (15) gives the location of adaptive observations that allow the variance of the
error on the selected forecast aspect to be reduced.

To optimize the location of targeted observations (in a statistical sense), it is
necessary to obtain a maximum decrease of the variance of the forecast score. The
problem is to find Hy, given the statistical characteristics of the conventional network,
that maximizes Eq. (15). This is a matricial optimization problem, which involves
complicated mathematical techniques (so-called linear optimization design, see Fedorov
et al. (1972)) such as the Simplex method, to be solved in an optimal way. Note that this
problem can be solved before any observations are performed, since only the statistical
characteristics of the observations and of the background field are needed. Although the
location of some conventional observations (such as the cloud-track wind vectors, for
example) are difficult to predict accurately, one assumes for the sake of simplicity that
the state of the conventional observations is exactly known.

The first difficulty lies in the estimation of the analysis-error covariance matrix
Ac. Most of the current assimilation schemes use the variational method in which the
analysis state is defined as a minimum of a cost function. This means that the analysis-
error covariance matrix is not computed during the minimization. However, several
methods exist for getting an estimate of it (Fisher and Courtier 1995). It should be noted
that Eqg. (15) depends on the covariance error matrices A¢ and Ry. If these matrices
are inaccurately specified, the optimal location of targeted data could be inaccurate as
well. It seems particularly essential to get a precise estimate of A in the direction of
the sensitivity VyJ. Following the work of Fisher and Courtier (1995), Doerenbecher
and Bergot (2001) showed how it is possible with the Lanczos algorithm to obtain an
accurate estimate of A in the unstable direction of the sensitivity, in an operational
assimilation context.
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The second difficulty for the computation of Eg. (15) lies in the estimation of
the inverse of the so-called ‘innovation of targeted covariance matrix’ Ry + HtACHtT.
The size of this matrix is the number of the targeted observations, N,. For currently
operational targeted applications (such as the definition of an optimal flight plan),
N; « 1000, and this matrix could be directly inverted. Another possibility for solving
the problem practically is to find the optimal location of the targeted observations in a
sequential manner, as explained in Bishop et al. (2001). In this case, one wants to find
a sub-optimal solution of the problem by first identifying the best location of a single
targeted observation. Once this location has been found, one can find the location of
the second targeted observation, taking into account the effect of the previous targeted
observation. This sequential method is very efficient for simplifying the problem;
however, it is only a sub-optimal method, in opposition to the solution given by the
global optimization of Eq. (15). In the case of such a method, the size of the innovation
covariance matrix is reduced to the size of one targeted observation, which makes its
inversion even easier.

The proposed method given by Eqg. (15) can be seen as a simplified evaluation of
the reduction of the forecast-error covariance in the direction of the sensitivity field.
Following Eq. (10), and the fact that Vi J = M T dJ/dx(¢1), the variance of the forecast
score S is given by

(05)>=MT dJ/dx(1)T-A.- (MT dJ/dx(r1))
= (dJ/dx(t1)) TMAMT dJ/dx(¢1). (16)

The evolution of the forecast-error statistic P in a perfect model context is given by
the Kalman filter theory:
P=MAMT. (17)

The comparison of Eq. (16) and Eq. (17) clearly shows that the variance of S is the
projection of the forecast-error covariance on the direction of the gradient field at
time ¢1.

The reduction of the forecast-error variance implied by Eq. (17), due to the inclu-
sion of targeted data to the conventional network of observations, can also be estimated
following Eq. (13):

Pe — Pert = MAGH] (Ry + HiAH) "THAMT. (18)

In the same manner, it can easily be seen that the reduction of the variance of the score
given by Eq. (15) is just an estimation of the reduction of the total forecast-error variance
in the direction of the sensitivity. In this sense, the proposed method will be called
‘Kalman Filter Sensitivity’ (KFS).

3. SINGLE TARGETED OBSERVATION CASE

(@ Mathematical simplification

As previously discussed, the optimal location of targeted observations could be
resolved by a sequential assimilation of a single targeted observation. In this case, the
optimal location of targeted data could be simplified into the search of the optimal
location of a single targeted observation. The aim of this section is to provide physical
interpretations of the proposed optimal sampling strategy.

Suppose that a single targeted observation is to be performed, and that this ob-
servation will measure a single element of the state vector x4(z0). Then, H¢ is a single
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row vector whose elements are all zero except for one element equal to 1. In a grid-point
model, the single observation is located at a grid point and the location of the ‘1’ element
in H¢ corresponds to the location of this observation; let this location be denoted by i.
In this case, the targeted observation-error covariance matrix Ry is reduced to a scalar,
oZ. Let the conventional analysis covariance matrix be denoted A = [a; ], and the
sensitivity field be denoted VyJ = [gx]. For a single observation at point i, Eqg. (15)

reduces to )
(b0l)? = ( > ai,kgk) / (02 + ai.p). (19)
k

The proposed optimal sampling problem is to find i that maximizes this expression. With
some approximations, this equation provides some clues. The numerator corresponds to
the product of the matrix of conventional-analysis covariances with the gradient field
Ac - Vi J, projected at the targeted observation point i. This expression is weighted by
the sum of the variance of the conventional analysis at the targeted-observation point
and the targeted-observation variance error. Suppose that the targeted observation is
of good quality (i.e. 02 < a;;). If the characteristic length-scales of the covariance
analysis-error matrix is smaller than the characteristic length-scales of the sensitivity
field (i.e. if A¢ is almost diagonal in the sensitive area), Eq. (19) can be simplified to
(605)2 = a,-?,-giz. The optimal location of the targeted data (in the sense of a maximum
reduction of the variance of the forecast score) is therefore the region of maximum
sensitivity weighted by the variance of the conventional-analysis error at this point. If A
is almost diagonal, and if the diagonal terms are almost uniform over the sensitive area,
the optimal sampling is mostly constrained by the dynamics (reflected by the sensitivity
field). In this case, the optimal targeted observation is located where the absolute value
of sensitivity is maximum. Alternatively, if the sensitivity field varies little with respect
to the length-scale of the conventional-analysis covariances, the sampling strategy is
dominated by the statistical characteristics of the conventional-analysis errors, and the
optimal targeted observation is located where the variance of the conventional-analysis
error is maximum. Of course, in real situations the optimal sampling strategy combines
both the dynamics and the analysis errors.

(b) Comparison with sensitivity to observations

Another way to optimize the location of targeted observations is to use the so-
called sensitivity to observations. Baker and Daley (2000) and Doerenbecher and Bergot
(2001) suggested that the sensitivity with respect to observations could be an efficient
tool for defining the location of targeted observations. One of the major advantages is
that the sensitivity to observations is significantly reduced in regions already sampled
by existing observations. Another advantage is that this kind of sensitivity takes into
account the way in which the observations will be assimilated. With the previous
notation, the sensitivity to targeted observations, y; is given by

VyJ = R{MHAC - V. (20)

The covariance analysis-error matrix A can be determined using Eq. (13). For a single
targeted observation at point i, this matrix reduces to

Acri={ajr — ai jair/(0& + ai)}jk. (21)
And the sensitivity to the targeted observation at point i is expressed by
Vyd () =Y aixgi/ (08 + aip). (22)
k
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If a; ; is almost uniform over the sensitive area (i.e. if the length-scale of the variance
of A¢ in the sensitive area is long compared to the length-scale of the sensitivity field),
the two methods (KFS and sensitivity to observations) lead to the same optimal location
of the targeted observation. This optimal location is also given by the maximum of
Ac - VyJ. The optimal location is the place where the sensitivity, weighted by the
analysis-error covariance matrix, is maximum. This case can arise, for example, if the
diagonal term in B is almost constant inside the sensitive area and if the conventional
data are only available far away from the latter.

Alternatively, if a; ; strongly varies in the sensitive area, for example if the sensitive
area is located close to a well-observed area, the two methods can give significantly
different optimal locations. To illustrate this point, let us decompose the elements of the
covariance error matrix A into a; x = oa(i)oa(k)o(i, k). The first two terms o,(i) and
oa(k) represent the standard deviation of the analysis errors at point i and k, respectively,
and the third term represents the normalized correlation between these two points. Let
us also denote 7 (i) = ), 0i kg« This term can be seen as the product of the sensitivity
field by the structure functions associated with the assimilation processes. Using this
notation, the sensitivity to observations (Eqg. (22)) is given by

Yy J () = 021 () /(062 + o2(i)), (23)
and the KFS method (Eq. (19)) can be written in the form
Sol)? =02 (i)I23) /(08 + 62(i)). (24)

It can be easily seen that (80%)? = (02(i) + 02)(Vy,J (i))?. In this sense, the KFS
method takes into account the way the targeted observations will modify the initial
conditions through the assimilation process, and the way these modifications could be
propagated by the model. Moreover, it takes into account the quality of the conventional
analysed field. It would be useful to recall here that Egs. (23) and (24), and therefore
this discussion, apply to a single observation only.

4. APPLICATION IN A SIMPLE 1D FRAMEWORK

(@) Simple 1D analysis framework

In order to better understand the optimal sampling problem, a very simple one-
dimensional (1D) univariate analysis system, quite similar to the one used by Baker and
Daley (2000), has been constructed. Since this framework is very simple, the application
of the following results to real cases may exhibit certain limitations. However, it can be
beneficial for a better understanding of the advantages of the KFS method.

The 1D domain contains N = 100 points, which are uniformly distributed over a
mesh with a spacing Ax. One wants to find the optimal location of a single targeted
observation (N; = 1), that measures the same quantity as the analysis variable. One
assumes that the sensitivity field VyJ has already been calculated, and this sensitivity
field is simulated here using simple trigonometric functions. The sensitivity at point x;
is assumed to follow

g(xx) = Bg cos{27m (xx — Xg)/Ag} €XP(—|xp — xg|/Ly), (25)

where x, is the location of the maximum sensitivity, L, is the characteristic length-
scale of the sensitive area, A, is the frequency of oscillation of the gradient field inside
the sensitive area and S, is a constant amplitude factor. In the following experiment,
the maximum amplitude of the gradient field is located in the middle of the domain
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Figure 1. Experiment for an aspect ratio Ly/L, = 0.1: (a) diagonal terms of the covariance analysis matrix

Ac4t, (D) sensitivity to initial conditions V.J, (c) sensitivity to targeted observation Vy, J, and (d) reduction of the

variance of the forecast error (80§)2. See text for explanation of symbols. In (c) and (d) the value of the sensitivity

to observation and of the reduction of variance is plotted with a + for the different location of the single targeted

observation. The large + sign corresponds to the optimal location for the sensitivity to observation method, while

the large = corresponds to the optimal location for the KFS method (as explained in the text, both optimal locations
are the same for this particular case).

(X, =50Ax), and the frequency of oscillation of the gradient field is taken as A, =
(3/2)L,. With this value of A, the sensitivity field looks as in reality. Different tests
have shown that the results presented hereafter are not affected by small changes of 1 ,
around this value. The gradient field tends towards zero over most of the domain, and
is non-zero inside a limited area (called the sensitive area) of characteristic length-scale
L (see Fig. 1(b)). It can be remarked that this framework is significantly different from
the 1D study of Baker and Daley (2001), in the sense that only a fraction of the domain
is sensitive to initial conditions. It can also be seen that this gradient field is symmetric
with respect to X .

The background-error covariance Bisan N x N matrix where element b ; ; is given
by a second-order autoregressive function

bjx =op(L+d(j, k)/Lv) exp(=d(j, k)/Lb), (26)

where Ly, is the correlation length for the background error; d(j, k) is the distance
between points x; and x; and is given, in this simple case, by d(j, k) = |j — k| Ax;
og is the background-error variance, and can be seen as a scaling factor. It is important
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Figure 2. Same as Fig. 1 for an aspect ratio L,/L, = 0.4.

to note that this formulation of B assumes quasi-isotropic error correlations in the guess
field. Therefore, the simple framework studied here is typical of a 3D-Var assimilation
scheme. It should be noted that some of the conclusions might change if the data
assimilation assumed flow-dependent error covariances, as for 4D-Var.

(b) Case with constant analysis variance error

The first simple targeting situation is the case where the variance of the conventional
observations analysis-error matrix is homogeneous (i.e. the diagonal term of matrix A
is homogeneous). This case can arise if there are no conventional observations inside,
or close to, the sensitive area. In this case, the conventional-analysis error covariance
matrix is equal to the background-error covariance matrix, A; = B inside the sensitive

area. Following the simple 1D framework previously described, the variance term o2

(i.e. the diagonal term of matrix A.) is therefore constant and equal to obz. One assumes
in this subsection that the conventional-analysis covariance is similar to Eq. (26). The
accuracy of the measurement is set equal to o2 = 02/16.

As previously demonstrated under these hypotheses, the sensitivity to observations
and the KFS method give the same optimal location of a single targeted observation
(the maximum amplitude of A;- VxJ). However, even in this very simple case, the
optimal adaptive observation is not necessarily located where the sensitivity with respect
to analysis, VxJ, is maximum, and it would be helpful to learn more about how
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Figure 3. Same as Fig. 1 for an aspect ratio L,/Lg = 2.0.

data assimilation schemes, and how instabilities in the model dynamics, will interact
(as previously shown by Baker and Daley (2000)). The quantity so SZ (and also VyJ)
depend on two length-scales: the gradient length-scale L 4, and the conventional-analysis
correlation length-scale Lp.

When the characteristic length-scale of the conventional-analysis error correlation
is much smaller than the characteristic length-scale of the sensitivity, i.e. Ly < Lg,
Eq. (19) may be approximated by (801)? = g(x;)?0,/(0Z + 02). Then, the optimal
single targeted observation is located at the maximum of the absolute value of sensitivity
with respect to analysis. An example of such a scenario is given in Fig. 1, for an
aspect ratio Lp/L, = 0.1. In such a case, all the useful information is contained in the
dynamical instability, and therefore in the classical gradient field with respect to initial
conditions.

If the characteristic length-scale of the gradient and of the conventional-analysis
error correlation is roughly similar, interactions between the observations, the data
assimilation system and the forecast model become more complex. Such an example
is given in Fig. 2, for an aspect ratio Lp/L, = 0.4. It can be noted that the optimal
targeted observation is not located at the extremum of the gradient field. Moreover, an
observation located at the maximum of the gradient (point 50) leads to a reduction of the
forecast variance of about 1/3 of the reduction due to the optimal observation. In such a
case, all information present in both the gradient field and the conventional-analysis
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Figure 4. \Variation of A¢-VxJ as a function of the aspect ratio and location in the domain (see text for
explanation).

error correlation is important, and should be taken into account to find the optimal
location of the targeted observation. It can be seen that this result implies that a single
targeted observation located in a region where the sensitivity is strong, but changes sign
rapidly (with respect to the conventional-analysis error length-scale), leads to a very
small impact on the forecast score. Conversely, a single targeted observation located in
a region where the sensitivity is relatively small, but with few changes of sign, leads to
a relatively large decrease of the forecast-score variance.

If Lp/Lg =2, it can be seen in Fig. 3 that any observation located inside the
sensitive area has about the same impact, in terms of the reduction of the score variance
(or in terms of sensitivity to observations). This behaviour can be explained by the
wide influence of the observation: any observation located inside the sensitive area
will modify the initial conditions in the same way. It can also be noted that the effect
of the targeted observation is reduced by a factor of 1/2 for sensitivity to observation
(Figs. 1(c) and 3(c)) and for the reduction of variance (Figs. 1(d) and 3(d)). This proves
that the efficiency of targeted observations also depends on the characteristics of the
assimilation scheme, as previously demonstrated by Baker and Daley (2000), Bergot
(2001) and Doerenbecher and Bergot (2001). This kind of experiment also allows
discussion of the effects of wrong background-error covariance assumptions on the
estimation of the reduction of the forecast-score variance. For example, one clearly
sees that the effect of assuming a larger scale in background-error covariance would
lead to an underestimation of the reduction of the forecast-error variance (cf. Figs. 1(d)
and 3(d)) with the KFS method.
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As previously explained, in the case of a single targeted observation and uniform
oa, the optimal location is given by the maximum of Ac - VyJ . In Fig. 4, (A¢ - VyxJ)?
is plotted as a function of both the aspect ratio L,/L, and the location x; of the
observation. Figure 4 allows the optimal location for different aspect ratios to be found
easily. The behaviour of this efficiency is relatively complex. However, it is noteworthy
that the area near the maximum of the gradient can correspond to a minimum in the
efficiency for many aspect ratios. Even in this very simple case, not only the sensitivity
field is important, but also the characteristic length-scale of the covariance errors which
should be taken into account for finding the optimal location of targeted observations.

In the simple case studied, the optimal Iocation of the targeted observations does not
depend on the accuracy of the measurement ao However, the estimation of the forecast-
error variance depends on o2. Figure 5 dlsplays the variation of variance reduction,
(SaS, at the optimal location as a function of o , Tor the three aspect ratios that were
previously studied. Following Eg. (24), the shape of the curves follows a function of
the type «/(1 4+ X) where o = o} 212(j) and X = lofs /oa The maximum reduction of
the variance is « and is obtained for very accurate measurements. This limit depends
on the aspect ratio Ly/L,: the smaller the length-scale of the error correlation function
assumed by the data assimilation scheme, the more efficient targeted observation is.
This illustrates that the reduction of forecast-error variance would be higher when the
length-scale of the correlations assumed in B are smaller.
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Figure 6. Same as Fig. 1 for the coastline case and an aspect ratio Ly/L, = 0.1. The conventional observations

are plotted with a + in (a) and (b). The large + corresponds to the optimal location for the sensitivity to observation

method, while the large * corresponds to the optimal location for the proposed method. Both optimal locations
are the same for this aspect ratio.

(c) Simulation of a coastline

In this subsection, we simulate a situation in which the target region is located close
to a coastline. This case frequently occurred during FASTEX, and it was then difficult
to define a flight plan since the influence of conventional observations on the sampling
of the sensitivity area was unknown. One assumes here that there is a conventional
observation every 5th grid point over the so-called ‘land” while there are no conventional
observations over the so-called ‘ocean’. This distribution is consistent with the classical
distribution of radio-sounding over North America and the North Atlantic Ocean. The
background term B is expressed as in Eqg. (26). As previously done, three different
aspect ratios Lp/Lg =2, 0.4 and 0.1 are studled The accuracy of both conventional
and targeted observations are equal to oo =0} 2/16, as in section 4(b). The location of
targeted observations are tested over land and ocean, indiscriminately.

Figure 6 shows the case where Ly, /L, = 0.1. In such a case, the three methods (sen-
sitivity with respect to initial condition, sensitivity with respect to targeted observation,
and the simplified KFS), give the same location for the optimal single targeted observa-
tion. This optimal targeted observation is located where the sensitivity with respect to
initial conditions is maximum.
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Figure 7. Same as Fig. 6 for an aspect ratio L,/L, = 0.4.

If the characteristic length-scale of the gradient and of the conventional analysis-
error correlation are roughly similar, the three methods give relatively different results
(Fig. 7). As noted by Baker and Daley (2000), one observes a phenomenon of super-
sensitivity to observation at the border between ocean and land. A comparison of
Figs. 2(c) and 7(c), shows that the sensitivity with respect to observation is multiplied by
a factor 2 near the coastline, and the optimal targeted observation from the sensitivity to
observation method is clearly located at the coastline, as previously shown by Baker and
Daley (2000). The KFS method gives significantly different results, consistent with the
explanation given in section 3(b). In fact, this method also takes into account the struc-
ture and amplitude of the errors in the conventional analysis fields, and consequently
the optimal targeted observation is clearly located over the ocean. An increase in the
maximum reduction of the forecast-error variance can be noted (Figs. 2(d) and 7(d)).
This phenomenon can be seen as a super-sensitivity, as previously. This is a consequence
of the conventional data located at the border of the sensitive area.

And finally, if Ly/L, =2, it can be seen in Fig. 8 that the three methods also
lead to different results. However, the three optimal locations are closer than in the
previous case (three points between the sensitivity to observation and the KFS). Another
important point is that, in such a case, the reduction of the variance of the forecast score



1704 T. BERGOT and A. DOERENBECHER

@) (b)
l -
o+
15}
057
10
(04 +
5 -0.5
0 : : ‘ ‘ : -1 : : : : :
0 20 40 60 80 100 0 20 40 60 80 100
(©) (d)
0.2¢ 8r
0 %W% EKT}
k> ! h
-0.2} e 6 + %
F + &
t T
—0.4+ i + +++
» A
% 4 + T
-0.6f T +
—0s8l + 4
0.8 + f 2t +
1 3 {g hy
“1t n by
-1.2 : : : : ' 0 HHHHlmHHHHHHlHlHM : t ;
0 20 40 60 80 100 0 20 40 60 80 100

Figure 8. Same as Fig. 6 for an aspect ratio L,/Lg = 2.0.

is about 1/8 of the homogeneous case (Figs. 3(d) and 8(d)). A reduction is also observed
for the sensitivity to observations, but with a factor 3/2.

In conclusion, one can remark that the aspect ratio Ly/L,, and thus the optimal
sampling, depends on numerous parameters. In fact, the length-scale L, varies as a func-
tion of the measured parameters, the vertical level, and the geographical and meteoro-
logical situations. The length-scale L , also varies as a function of the model parameters,
model levels, meteorological situations and forecast aspect J. Consequently, it is not
trivial to define a universal aspect ratio Ly /L valid for real numerical weather-forecast
models. The results presented here certainly depend on the behaviour of the gradient
field, and the simple framework used here may limit their validity in the context of a
real numerical weather-forecast models. However, these findings illustrate very well the
non-trivial nature of optimal sampling in a sensitive area. Moreover, since forecast errors
grow nonlinearly and since error covariances in the operational assimilation scheme
are not accurately specified, the KFS method could lead to errors in the definition of
the optimal sampling. While these results in a simple context seem encouraging, it is
necessary to evaluate the robustness of the KFS method in an operational numerical
weather-prediction context.
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5. APPLICATION IN AN OPERATIONAL CONTEXT

(@) Context

The previous sections have focused on applications of the KFS method in a
simplified context. In the future, it is envisioned that this method will be used in an
operational context to examine different sampling strategies. For example, we hope to
use this method during the future THORPEX experiment*. However, the KFS results
might also be used in a diagnostic way (once the observations are made) in order
to understand results obtained during previous field experiments, such as FASTEX,
January to February 1997t. This is the main aim of this section.

The focus here is on four FASTEX Intensive Observing Period (IOP) flights for
which soundings collected by the Gulfstream 1V are available (see Bergot (2001) for
more details): IOP15, I0P17 (2 flights) and 10P18. These flights have been studied in
detail by different teams (see, for example, Langland et al. 1999b; Gelaro et al. 1999;
Cammas et al. 1999; Bergot 1999).

The model used is the French Arpege/Integrated Forecast System operational
model, developed in collaboration with the European Center for Medium-Range
Weather Forecasts (Courtier et al. 1991). The assimilation scheme is an incremental
3D-Var, and the covariance analysis-error matrix is estimated following the work by
Fisher and Courtier (1995) and Doerenbecher and Bergot (2001). The conventional
observations used in this application are similar to those used for studying the efficiency
of FASTEX targeted observations (Bergot 1999, 2001). The forecast aspect J is the
enstrophy, integrated vertically around 850 hPa, over the horizontal verification area
(35°N-65°N, 30°W-0°). This score is the same as the one used during the FASTEX
field experiment.

(b) Validation in diagnostic mode

A previous study has enabled us to estimate the improvement of the forecasts,
resulting from the inclusion of targeted data, in a systematic way (Bergot 2001). A
summary of the improvement of the forecasted kinetic energy for the four cases studied
is given in Table 1 (see Bergot (2001) for more details). It can clearly be seen that
two flights strongly improve the forecast: the first flight for IOP17 and the flight
for 10P18. For the four flights studied, the data assimilation scheme’s estimate of
the variance of the forecast error has been computed for different scenarios (Fig. 9):
without data, (VxJ)T-B- VyJ; with conventional data only, (VxJ)T - Ac- VyJ; with
targeted data only, (VyxJ)T - At - Vi J; and with targeted data added to conventional ones,
(Vx )T+ Ayt V.

One case (IOP15, 15 February 1997) corresponds to a very small variance of the
forecast error in the direction of the sensitivity (about 1/36 of that from the first flight
for IOP17), even without data. The inclusion of the conventional data further decreases
this variance. Even without targeted data, the forecast for this IOP15 exhibits a strong
confidence. The KFS method applied to these data gives the smallest reduction of the
variance of forecast score and implies that this flight is inefficient. This result is in
agreement with the result from the systematic study of the influence of FASTEX targeted
data.

The second flight for IOP17 (18 February 1997) has a stronger variance of the fore-
cast score arising from the background field. However, the inclusion of the conventional

* The Hemispheric Observing Research Program Experiment, see
http://www.nrimry.navy.mil/~langland/THORPEX_document/ THORPEX_plan.pdf for details.
t See http://www.cnrm.meteo.fr/fastex/
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TABLE 1. IMPROVEMENT OF THE FORECAST KINETIC ENERGY DUE TO THE
INCLUSION OF TARGETED DATA FOR THE FOUR CASES STUDIED

Improvement
10P Initial time Final time Duration @ kg™)
IOP15 06 uTtc 15 February 00 uTC 16 February 18 h 42.68
IOP17 18 uTc 17 February 12 uTc 19 February 42h 329.39
IOP17 18 uTC 18 February 12 utc 19 February 18h 37.26
IOP18 12 uTc 22 February 12 uTc 23 February 24 h 147.47
All dates are 1997. See Fig. 8 of Bergot (2001) for more detail.
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Figure 9. The variance of the forecast score for the four studied cases. Left to right bars: without data,

(Vx )T - B+ Vy J; with conventional data only, (VxJ)T - A¢ - VyJ; with targeted data only, (VxJ)T - A¢- VyJ; and

with targeted data added to conventional ones, (VyxJ )T Acit- VxJ. See Table 1 for times of I0Ps and text for
further explanation.

data strongly decreases this variance (by about 80%), and the effect of the targeted data,
given the conventional network of observations, is relatively weak. Again, this flight is
relatively inefficient, and this result is in agreement with Table 1.

The first flight for IOP17 (17 February 1997) is noteworthy in the sense that the
error variance of the forecast resulting from the background field is the highest of the
four studied cases. However, as for the second flight for this IOP (18 February 1997), the
conventional data strongly reduce this variance (by about 74%). The positive effect of
the targeted data added to conventional ones on the variance of the score clearly appears,
and represents a reduction of about 31% of the variance of the forecast resulting from
the analysis based on conventional observations only.

However, the more interesting case is IOP18 (22 February 1997). For this case, the
effect of the targeted observations on the variance of the score is higher than the effect
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Figure 10. 10P18 (22 Feb 1997): (a) the sensitivity field for temperature at model level 23 (about 800 hPa), and
(b) the product of the sensitivity field and the conventional-analysis error variance, A; - VxJ (see text). The black
dots are the flight path.

of the conventional ones, even though only 25 dropsondes are available. The inclusion
of the targeted observations leads to a reduction of the forecast-score variance by about
42%. Other studies performed with different assimilation schemes and models (Lang-
land et al. 1999b; Bergot 2001) have previously demonstrated that this case is a success
from the targeting point of view. The KFS result is in agreement with these studies.

(c) Towards an application in a prognostic mode

In order to understand the optimal deployment of observations given by KFS,
Figs. 10(a) and (b) show the classical sensitivity field and the product A¢- VxJ, re-
spectively, for FASTEX I0OP18. As previously mentioned, the targeted observations
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performed during this case are very efficient. The product A - VxJ corresponds to
the first term of the KFS method (Eg. (15)). As previously explained, if the length-
scale of the analysis-error covariance matrix is large with respect to the length-scale
of the sensitivity field (at least over the ocean), the KFS method can be summarized
by this product. First it can be pointed out that the sensitive area defined with A¢ - VyJ
(Fig. 10(b)) extends further horizontally than the sensitive area defined with the classical
sensitivity field (Fig. 10(a)). The second point concerns the vertical structure of the
sensitive area. Figure 11(a) shows a vertical cross-section of the classical sensitive area,
and one can see the typical very pronounced vertical tilt. Figure 11(b) shows the same
cross-section for A¢ - Vi J. Clearly noticeable is a more barotropic structure, with only
a smaller vertical tilt. However, the maximum of sensitivity is located at the lower levels
for both sensitive areas (around model level 22, i.e. about 750 hPa). These results are
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Figure 12. (a) Reduction of the forecast-error variance given by the KFS method, and (b) forecast error, for the
experiment where targeted observations are only temperature measurements (‘temp’) or only wind measurements
(‘wind’).

robust for the four studied cases, and are undoubtedly a consequence of the assimilation
scheme used (3D-Var for this study).

The results of the previous section suggest that the KFS method can discriminate the
cases where adaptive observations are needed and are efficient. However, this method
must also be useful for making a choice between different possible deployments of
observations. To illustrate this point, the flight for IOP18 has been decomposed into
two deployments: in the first one, only temperature measurements from dropsondes are
taken into account (experiment called ‘temp’), and in the second one assumes that only
wind measurements have been performed (experiment called ‘wind’). Figure 12 shows
the reduction of the forecast-error variance given by KFS, (805)2, and the forecast error
|S] = |J(X) — J(Xirue) |, Where Xye is given by the analysed value. Note that the ‘wind’
deployment of observations leads to a significantly stronger reduction of forecast-error
variance than in the ‘temp’ one (Fig. 12(a)). Associated with this decrease in the
forecast-error variance, Fig. 12(b) shows a significant decrease of the forecast error for
the ‘wind’ experiment. For this particular case, the efficiency of targeted observations
is clearly a consequence of the wind measurements, and this result is in agreement with
the result given by the KFS method. This preliminary result allows us to be optimistic.
However, it will be necessary to validate the KFS method for numerous cases.

6. CONCLUSION

A new technique, called Kalman Filter Sensitivity (KFS), has been proposed for
identifying the optimal deployment of an adaptive observation network. The KFS
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method allows the quantification of how targeted observations would reduce the variance
of a given forecast score (such as enstrophy or kinetic energy, inside a verifying area for
example). This estimation is consistent with the statistics used during the assimilation,
and with the dynamics of the atmosphere, given by a classical sensitivity field.

A very simple application of this technique in a 1D problem has been performed.
This framework allows a 3D-Var assimilation scheme to be simulated. These pre-
liminary results show that the sampling of a sensitive area is strongly constrained
by the aspect ratio between the length-scale of the sensitivity area and of the con-
ventional analysis-error covariance matrix. If the sensitivity varies little with respect
to conventional-analysis covariance, all the useful information is summarized by the
classical gradient field. In other cases, it is not trivial to find the optimal location of
targeted observations, and the assimilation scheme, the sensitivity field and the analysis
covariance errors associated with conventional observations, should be all taken into
account. For example, an observation located in a region where the sensitivity is strong,
but changes sign rapidly, leads to a very small reduction of the forecast-error variance
of the chosen forecast aspect. In this case, the more efficient observations can be located
at the border of the sensitivity field or near a coastline (region of super-sensitivity as
previously mentioned by Baker and Daley (2000)). This work also clearly demonstrates
that the sampling of the sensitive area strongly depends on the covariance of the analysis
errors. A definition of an optimal deployment of targeted observations (in the sense of a
minimum number of observations for a maximum improvement of the forecast) should
therefore include the characteristics of the statistics of these errors.

An advantage of the KFS method compared to other adjoint-based targeting
techniques is that it provides an explicit technique for computing the reduction of the
variance of the forecast of a given score as a function of different deployments of ob-
servations. This is only strictly true if the observation- and background-error covariance
are accurately specified, and if the errors evolve linearly. In order to test the validity
of this computation, the KFS technique has been employed in a diagnostic way on
four FASTEX cases. For the four studied cases, the reduction of the variance of the
forecast score given by the KFS method is in agreement with the systematic survey of
the efficiency of FASTEX flights (Bergot 2001). In the two cases of small improvement
of the forecast (IOP15 and second flight for 10P17), the KFS technique indicates a
small reduction of the forecast-error variance. Against this, in the two cases of strong
improvement of the forecast (first flight for IOP17 and 10P18), the KFS method sug-
gests a strong reduction of the forecast-error variance. The IOP18 is noteworthy in the
sense that the reduction of the forecast-error variance due to the targeted observations
alone (25 dropsondes, without conventional observations) is stronger than the reduction
of the forecast-error variance due to conventional observations. For this IOP18, two
complementary deployments of targeted observations have been studied: the first one
only contains temperature measurements, and the second only wind measurements. For
these cases, the wind measurements are the most efficient in the sense of the forecast
score imposed (enstrophy). The KFS method is in total agreement with this result: the
assimilation of wind measurements will lead to a stronger reduction of forecast variance.

These results seem to validate the KFS approach for targeting purposes. It is
important now to study the use of this tool in a prognostic mode (before the conventional
and targeted observations are done), in order to try to optimize a network of targeted
observations. What will be the most efficient deployment of targeted observations,
given the conventional network of observations, the assimilation scheme and the actual
instabilities of the atmosphere? To answer this kind of question, it is now necessary to
test the KFS method for numerous cases. This can be achieved for example in numerical
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simulations, such as the Observing System Simulation Experiment, and during field
experiments, such as the future THORPEX experiment. This kind of experiment will
allow the strengths and weaknesses of KFS to be evaluated.
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