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Abstract—Skillful low visibility forecasts are essential for air-traffic managers to effectively regulate

traffic and to optimize air-traffic control at international airports. For this purpose, the COBEL-ISBA

local numerical forecast system has been implemented at Paris CDG international airport. This local

approach is robust owing to the assimilation of detailed local observations. However, even with dedicated

observations and initialization, uncertainties remain in both initial conditions and mesoscale forcings. The

goal of the research presented here is to address the sensitivity of COBEL-ISBA forecast to initial

conditions and mesoscale forcings during the winter season 2002–2003. The main sources of uncertainty of

COBEL-ISBA input parameters have been estimated and the evaluation of parameter uncertainty on the

forecasts has been studied. A budget strategy is applied during the winter season to quantify COBEL-ISBA

sensitivity. This study is the first step toward building a local ensemble prediction system based on

COBEL-ISBA. The conclusions of this work point out the potential for COBEL-ISBA ensemble

forecasting and quantify sources of uncertainty that lead to dispersion.

Key words: Local numerical forecast system, fog and low clouds, seasonal sensitivity, initial

conditions and mesoscale forcings uncertainties, forecast dispersion, local ensemble prediction system.

1. Introduction

Accurate prediction of fog and low clouds is one of the main issues related to

improving air-traffic management and safety. At Paris Charles de Gaulle (CdG)

international airport, adverse ceiling and visibility conditions (visibility under 600 m

and ceiling below 60 m) lead to the application of Low Visibility Procedures (LVP).

Under these conditions, the airport take-off/landing efficiency is reduced by a factor

of 2, causing aircraft delays. In this context, accurate short-term forecasts of LVP

conditions are considered to be a priority by airport authorities.

Unfortunately, current operational Numerical Weather Prediction (NWP)

models are not able to provide detailed information due to their lack of both

vertical and horizontal resolutions with respect to the typical length scale of fog.

However, owing to higher vertical resolution and more detailed physics than 3D
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NWPs, one-dimensional modeling is an attractive alternative (e.g., MUSSON-GENON,

1986; DUYNKERKE, 1991; BERGOT and GUÉDALIA, 1994). This 1-D approach to

forecast the fog and low cloud life cycle is currently used operationally at San

Francisco airport (CLARK, 2002) and at CdG airport (BERGOT et al., 2005). The same

kind of strategy is tested in the northeast corridor within the framework of the US

Federal Aviation Administration ceiling and visibility project (HERZEGH et al., 2002).

The numerical prediction method used at CdG (see BERGOT, this issue for more

details) includes:

� Specific observations from a 30 m meteorological tower (atmospheric temperature

and humidity, shortwave and longwave radiation fluxes) and soil measurements;

� the mesoscale forcings (mesoscale advection, geostrophic wind and cloud cover)

are evaluated from the Météo-France operational NWP model Aladin (see http://

www.cnrm.meteo.fr/aladin/);

� a local assimilation scheme is used to construct initial conditions, based on a 1-D-

var assimilation scheme together with a fog and low cloud specific initialization;

� the 1-D high resolution COBEL-COde de Brouillard à l’Echelle Locale (Local

scale fog code) atmospheric model (BERGOT, 1993; BERGOT and GUÉDALIA, 1994)

coupled with the multilayer surface-vegetation-atmosphere transfer scheme ISBA-

Interaction Soil Biosphere Atmosphere (BOONE et al., 2000; BOONE, 2000).

BERGOT (this issue) documented the conditions when the local approach should be

useful. However, a finer understanding of the limits of predictability for the specific

case of fog and low clouds also needs to be performed. Which is the main goal of the

current study. Under the hypothesis of a ‘‘perfect model’’, the uncertainty of

forecasts made with the Cobel-Isba numerical system arises from uncertainty caused

by two distinct sources of errors, namely, from errors in the specification of the initial

conditions, as well as errors in the specification of the mesoscale forcings. Here the

focus is on very short-term forecasts and attention is restricted to a perfect model

situation. The influence of model errors will be studied in future work. This is the first

step toward building a local 1-D Ensemble Prediction System (L-EPS) based on the

COBEL-ISBA model.

In the first stage, the input uncertainties have been evaluated following the spatial

and temporal variability of input data. The methodology and the uncertainties

regarding input parameters will be discussed in section 2. In the second stage, the

impact of input uncertainties for COBEL-ISBA LVP forecasts is examined. A key

aspect of this study is to assess the input uncertainty impacts on the LVP forecast in

order to evaluate the dispersion of Cobel-Isba forecasts, and also to obtain insights on

how to build an efficient L-EPS. Usually, 1-D studies focus on selected cases and do

not give a global overview of input uncertainty impacts. Here, the problem is examined

from a seasonal point of view by running the local prediction system for the winter

season 2002–2003 with a three-hour data assimilation frequency. This approach

permits the evaluation of the overall impact of the main input uncertainties for the
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prediction of foggy conditions at CdG. In section 3, these results are summarized by

focusing on the forecast scores during the winter for both initial condition and

mesoscale forcing uncertainties. And finally, section 4 concludes with a discussion on

how these results could be used to build a local ensemble prediction system.

2. Estimation of Uncertainties for Input Parameters

2.1. Mesoscale Forcing Uncertainties

2.1.1. Methodology

The mesoscale forcing is provided by the operational NWP model Aladin (http://

www.cnrm.meteo.fr/aladin/). Three different forcing terms are evaluated: horizontal

advections, geostrophic wind and cloud cover. Aladin has a 10 km horizontal

resolution. However, even with this resolution unresolved scales or errors in the

mesoscale initial conditions induce noticeable variability at the grid point and in the

neighborhood of the study zone in time, revealing the model uncertainty (ROQUE-

LAURE, 2004). Unfortunately, it is not possible to accurately define the uncertainties of

the mesoscale forcing terms, for example by comparing with measurements. To

overcome this difficulty, it is necessary to evaluate the uncertainties from the Aladin

forecasts only.

The mesoscale forcing uncertainty computation is then based on the hypothesis

that uncertainty is correlated with the variability of the NWP model. The model

variability is assessed in both space and time. The spatial variability is evaluated by

comparing the forecast over an area of 3 � 3 grid points. This area is representative

of homogeneous surface conditions around the study area. Moreover, it is not

possible to extend this homogeneous area due to the presence of urbanized areas in

the south-west (Paris). The temporal variability is evaluated by comparing four

Aladin runs (0, 6, 12 and 18 UTC) for the same verification time. This choice allows

the comparison of short-term forecasts only. At the end of this process, the

variability in both space and time is used to estimate the shape of the distribution of

uncertainties.

2.1.2. Horizontal advection

The temperature and humidity advection are computed over 9 grid points using

the spatio-temporal approach for uncertainty computation. Figures 1a and 1b show,

respectively, the temperature and humidity advection uncertainty distributions on

winter season 2002–2003 for the Aladin vertical levels below 1 km within the

boundary layer. Both temperature and humidity advection distributions have a ‘‘V’’

symmetrical shape, which indicates a linear growth of the uncertainty along with the

rise of the mean advection value. However, notice that for small advection intensities

in terms of the absolute value (lower 0.1 C.h�1 for temperature advection and lower

than 0.05 g.kg�1.h�1 for humidity advection), the mean advections have the same
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magnitude as the uncertainty. In radiative fog events frequently observed in CdG, the

magnitude of the advections is relatively small (a fog event associated with weak

winds). In these situations, advection uncertainty is as important as the mean

advection. For conditions representative of higher advection values, the order of

magnitude of the uncertainty increases weakly as the advection mean values increase.

For temperature advection values over 0.2 C.h�1 and humidity advection values over

0.05 g.kg�1.h�1, uncertainty is less than 40% of the advection.

2.1.3. Geostrophic wind

The geostrophic wind is computed from the horizontal pressure gradient and it

is computed over a 100 � 100 km2 area (see BERGOT et al., 2005 for more details).
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Figure 1

Aladin temperature (a) and humidity (b) advection uncertainty distributions for vertical levels below 1 km.
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Figure 2 presents the geostrophic wind uncertainty as a function of the mean

geostrophic wind for the winter season 2002–2003 and for vertical levels below 1

km. The evolution of the geostrophic mean wind uncertainty is almost linear for

wind speeds below 15 m/s. In the case of fog, wind strength is generally below 6

m/s and even below 2 m/s in case of radiative fog, and the wind uncertainty is

about 1 m/s.

2.1.4. Cloud cover

Current NWP models do not accurately forecast thin clouds or boundary layer

clouds (e.g., stratocumulus). However, the appearance and the life cycle of a fog layer

is very sensitive to the presence of cloud cover. Unfortunately, the spatial and

temporal variation of the Aladin cloud cover are very small and it is not possible to

estimate the cloud cover uncertainty by using the previously mentioned method (the

cloud cover uncertainty mainly comes from approximations made in physical

parameterization schemes). Two extreme hypotheses have been tested: a clear sky

hypothesis and a persistence hypothesis. The persistence hypothesis is based on the

assumption that the observed cloud cover is maintained during the 12 hours of the

simulation, while the clear sky hypothesis assures that the sky remains clear during

this period. An intermediate situation is also possible, by using the Aladin cloud

cover forecasts. These three simulation cycles have been performed to quantify the

cloud cover impact. Comparisons between 2 m downward longwave observations

and COBEL-ISBA radiative fluxes using the clear sky hypothesis reveal a significant

bias and standard deviation of the downward longwave fluxes (bias = )16.6 W/m2,

and std = 25 W/m2). The Aladin and persistence cycles have a weaker bias for the

2 m longwave radiative fluxes (the bias for Aladin cycle = )6.4 W/m2, and the bias
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Aladin geostrophic wind uncertainty distribution for vertical levels below 1 km.
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for persistence cycle = )2.3 W/m2) in addition to a lower standard deviation (std for

Aladin cycle = 19.8 W/m2 and std for persistence cycle = 14.3 W/m2).

2.2. Initial Condition Uncertainties

Initial conditions must be specified for both atmosphere and soil. Soil

temperature and moisture profiles are estimated from on-site observations. The

COBEL-ISBA analysis is based upon local observations, a guess field (which is the

previous COBEL-ISBA forecast) and forecast profiles from NWP model Aladin. The

1-D variational assimilation scheme makes use of all this information to produce the

best analysis possible. Through the 1-D variational assimilation process, observa-

tions are prevailing in the surface boundary layer. Above the surface boundary layer,

as no observations are available, the COBEL guess issued from the previous forecast

and the Aladin profile are combined. For more information on COBEL-ISBA data

assimilation system, see BERGOT et al. (2005).

2.2.1. Atmospheric temperature and humidity profiles

Observations are the main information used to compute the atmospheric

profiles in the surface boundary layer through the variational assimilation.

Consequently, the low level temperature and humidity uncertainties are well

represented by measurement uncertainties for both the temperature and the

humidity. These measurement uncertainties are estimated at 0.2 degree Celcius for

temperature and 0.2 g.kg�1 for humidity (see MARZOUKI, 2005). For the upper part

of the boundary layer, the analysis follows the COBEL guess and the Aladin

profiles. In practice, in order to compute uncertainties for upper atmospheric

layers, we used the spatio-temporal method described in section 2.1.1. The

estimated uncertainties are 0.6 degree Celcius for temperature and 0.5 g.kg�1 for

humidity. A smooth linear interpolation is applied between the surface boundary

layer where the measurement uncertainties prevail and the upper part of the

boundary layer where Aladin uncertainties dominate.

2.2.2. Fog and stratus initialization

The fog/stratus initialization of COBEL-ISBA is based on an iterative method

(BERGOT et al., 2005). The depth of the cloud layer is determined by minimizing the

radiation flux divergence between 2 m and 45 m (the two levels of radiative

measurements). If the fog or low clouds are above the upper level of the radiative

measurements (45 m), the fog depth is estimated by minimizing the errors of the

radiative fluxes at the ground. CARRER (2003) has shown that the uncertainty is on

the order of +/) 1 Cobel grid point for very low clouds (cloud top below 45 m). On

the other hand, for events with higher cloud tops, uncertainty is more significant and

diagnostics done by CARRER (2003) reveal that the uncertainty is on the order of +/)
2 Cobel grid points.
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The liquid water content (LWC) uncertainty impact on LVP forecasts is

addressed when fog (or stratus) is detected and initialized. Studies by MEYER et al.

(1986) and WALMSLEY et al. (1999) have shown that LWC in fog ranges between 0.08

and 0.5 g.kg�1. Here the goal is to analyze the impact of the small change of LWC in

the cloud initialization. A 0.05 g.kg�1 liquid water uncertainty is then added (or

removed) to the cloud reference liquid water content.

2.2.3. Soil temperature and moisture initialization

Soil temperature and moisture uncertainties are estimated from the accuracy of

the measurements. Observed soil temperature and humidity variability during the

winter are used to estimate soil vertical profile uncertainties for temperature and

humidity. The maximum variability observed at each level is used as an estimate of

uncertainty. Soil temperature uncertainty is constant at 0.1 degree Celcius up to

)30 cm, and increases linearly up to 1 degree Celcius close to the surface. Soil

humidity uncertainty is also constant up to )30 cm at 0.01 g.kg�1, and increases

linearly up to 0.025 g.kg�1 near the surface.

3. Forecast Sensitivity

3.1. Statistics Used to Perform Diagnostics

Numerous COBEL-ISBA simulations have been performed continuously for the

winter season 2002–2003 for each perturbed configuration. A sensitivity study is

conducted by comparing three different cycles (in a perturbed cycle, only the studied

parameter is perturbed): the reference cycle (non perturbed), the cycle ‘‘+’’ (perturbed

by adding the uncertainty), the cycle ‘‘)’’ (perturbed by subtracting the uncertainty).

The main statistical tools used to examine the quality of LVP forecasts (and the

dispersion between perturbed cycles) are the Hit Rate (HR) and the False Alarm

Rate (FAR). If a is the number of observed and forecasted events, b is the number of

not observed and forecasted events, and c is the number of observed and not

forecasted events, HR and FAR are defined by equations (1) and (2):

HR ¼ a
aþ c

; ð1Þ

FAR ¼ b
aþ b

: ð2Þ

The difference between the perturbed cycles scores (HR and FAR) is used.

Uncertainty quantification is made by determining dispersion on LVP scores

between the two perturbed cycles.

Dispersion ¼ kSperturbed cycleþ � Sperturbed cycle�k ð3Þ
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where S can either represent HR or FAR at a particular forecast time during the 12 h

simulation.

This study is designed to analyze initial conditions (IC) and mesoscale

uncertainty impacts on the LVP forecast. However, uncertainty also has an

indirect impact on thermodynamic parameters such as heat and humidity.

Consequently, a heat and humidity budget strategy is applied to COBEL profiles

to look at this question. IC and mesoscale perturbations act upon the 3-hour run

needed to produce a guess field for the next assimilation. As a consequence,

COBEL initial profiles are influenced by perturbations through the computation of

the guess field (Fig. 3). Comparing the perturbed and the reference cycle budgets

for each run during the winter season is an efficient way to quantify heat (or

humidity) changes. Equation (4) gives the computation of the fraction R of heat (or

humidity) gain (or loss) in the guess profiles due to uncertainty at time t for a

perturbed cycle:

R ¼ Qperturbed � Qreference

Qreference
; ð4Þ

where Q can either represent the heat or the humidity column balance. Subscripts

refer to either the reference cycle or a perturbed cycle at time t. The mean and

standard deviation of the R are computed in order to quantify the mean uncertainty

impact and the variability of this impact on the winter period. Both scores are

important in this context because sensitivity can be revealed by the variability of R
coefficient and also by the mean value.

true atmosphere state

non perturbed analysis 

non perturbed guess

non perturbed run

perturbed analysis 

perturbed guess

perturbed run 0  3  6  9

Time (h)

Figure 3

Schematic representation of perturbed cycles.
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3.2. Forecast Sensitivity to Initial Conditions

The goal of this section is to evaluate the impact of initial condition uncertainties

on LVP forecasts. The reference cycle and the perturbed cycles are done with the

clear sky hypothesis (without cloud cover) and without advection.

3.2.1. Forecast sensitivity to atmospheric profiles uncertainties

The uncertainty previously estimated has been applied to the COBEL atmo-

spheric profiles at the initial time. Tables 1 and 2 show that temperature uncertainty

causes more dispersion for the LVP scores than humidity uncertainty. For humidity,

dispersion is weak and almost constant during the runs (under 3%) for both HR and

FAR, whereas dispersion reaches 15.5% for HR and 8% for FAR for the

temperature at 9 h. The budget strategy results (Table 3) reveal that the atmospheric

temperature uncertainty has an impact on both temperature and humidity in the

guess atmospheric profile. For the warmer cycle, the mean heat change is 0.28%

(std = 0.08%) and the mean humidity is 0.48% (std = 1.57%). This double impact

can explain the higher dispersion made by temperature uncertainty. Actually,

atmospheric humidity uncertainty has minimal impact on the heat balance. For

example, mean impact of the moister cycle for the winter is very low (mean =

)0.001% and std = 0.02%).

Figure 5 shows that the reference cycle scores (HR and FAR) do not necessarily

lie between the perturbed cycles scores. Dispersion is asymmetric from the reference

cycle. The colder cycle leads to similar scores as the reference cycle, but the warmer

cycle gives better scores for both HR and FAR. This result suggests that there might

be a cold bias in the atmospheric boundary layer profiles from the Aladin NWP

model. The better results for both scores at most forecast times may be explained by

the cold bias correction induced by the warm uncertainty applied for the atmospheric

temperature profile.

Table 1

Hit Rate (HR) dispersion for perturbed cycles. Values of dispersion over 10% are in bold

kHRperturbed cycleþ � HRperturbed cycle�k (%) Forecast time (hour)

1 3 6 9 12

Atmospheric temperature (initial condition) 0.0 2.3 9.4 15.5 2.4

Atmospheric humidity (initial condition) 2.9 2.3 2.4 0.0 2.4

Clouds depth (initial condition) 17.6 23.2 28.9 24.3 19.5

Clouds liquid water (initial condition) 11.7 16.2 4.6 12.1 9.7

Soil temperature (initial condition) 20.5 4.6 4.6 9.7 7.3

Soil moisture (initial condition) 8.7 0.0 2.4 2.5 0.0

Geostrophic wind (mesoscale forcing) 5.8 9.2 7.0 4.8 4.7

Cloud cover (mesoscale forcing) 5.9 2.3 4.7 4.8 7.3

Temperature advection (mesoscale forcing) 0.0 6.9 7.1 2.5 2.4

Humidity advection (mesoscale forcing) 14.6 23.2 26.1 36.4 16.9
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3.2.2. Forecast sensitivity to the low cloud initialization

For cloud initialization, perturbed cycles produce deeper or thiner clouds than

the reference cycle. The first three simulation hours needed to compute the guess field

are crucial. With different cloud properties, the vertical structure of the boundary

layer could greatly change (Fig. 4). These changes are significant and evaluated with

the budget strategy. Variability of the winter for humidity balance in the guess

atmospheric profiles is high (1.9% for deeper clouds and 1.14% for thinner clouds).

The heat balance variability is also significant (std = 0.136% for deeper clouds and

Table 3

Heat and humidity mean changes in the atmospheric guess profile for the initial conditions cycle. Values over

0.2% for mean heat and mean humidity are in bold. Values over 0.1% and over 1% are in bold for the std of

heat and the std of humidity, respectively

R ¼ ðQperturbed � QreferenceÞ=Qreference Heat (%) Humidity (%)

mean on cycle std mean on cycle std

Temperature ‘‘+’’ (warmer) 0.28 0.08 0.48 1.57

Temperature ‘‘)’’ (colder) )0.004 0.01 )0.009 0.38

Humidity ‘‘+’’ (moister) 0.001 0.02 0.24 0.50

Humidity ‘‘)’’ (drier) )0.001 0.01 )0.28 0.49

Clouds depth ‘‘+’’ (deeper clouds) )0.052 0.136 )0.18 1.90

Clouds depth ‘‘)’’ (thinner clouds) 0.021 0.071 0.22 1.14

Clouds liquid water ‘‘+’’ (heavier clouds) 0.008 0.068 0.15 1.50

Clouds liquid water ‘‘)’’ (lighter clouds) )0.008 0.067 )0.009 1.64

Soil temperature ‘‘+’’ (warmer) 0.006 0.024 0.18 0.57

Soil temperature ‘‘)’’ (colder) )0.005 0.031 )0.23 0.63

Soil humidity ‘‘+’’ (moister) )0.001 0.018 0.02 0.56

Soil humidity ‘‘)’’ (drier) 0.004 0.024 )0.09 0.58

Table 2

False Alarm Rate (FAR) dispersion for perturbed cycles. Values of dispersion over 10% are in bold

kðFARperturbed cycleþ � FARperturbed cycle�k (%) Forecast time (hour)

1 3 6 9 12

Atmospheric temperature (initial condition) 3.3 1.4 6.4 8.0 0.5

Atmospheric humidity (initial condition) 1.9 0.1 0.7 2.9 0.2

Clouds depth (initial condition) 23.9 14.4 4.0 7.6 8.0

Clouds liquid water (initial condition) 6.2 2.4 1.7 4.9 3.4

Soil temperature (initial condition) 3.9 9.0 6.9 3.4 0.0

Soil moisture (initial condition) 0.4 0.0 1.4 1.3 0.4

Geostrophic wind (mesoscale forcing) 4.2 8.8 9.9 13.5 11.0

Cloud cover (mesoscale forcing) 7.7 4.9 5.2 5.9 4.3

Temperature advection (mesoscale forcing) 9.8 10.3 10.3 13.5 14.1

Humidity advection (mesoscale forcing) 7.7 10.6 9.1 7.4 15.6
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0.071% for thinner clouds). As a consequence, the LVP score dispersion induced by

the cloud depth uncertainty is significant (from 17.6% at 1 h to 28.9% at 6 h) for HR

and (from 4% at 6 h to 23.9% at 1 h) for FAR.

Liquid water content (LWC) uncertainty leads indirectly to the same effects as for

the fog/stratus depth initialization, by modifying the liquid water path. However,

dispersion in that case is less significant than dispersion generated by a cloud depth

uncertainty. Dispersion is below 17% for HR and below 7% for FAR.

3.2.3. Forecast sensitivity to soil profile uncertainties

Soil temperature uncertainty generates more LVP score dispersion than soil

moisture uncertainty. Once again, the budget strategy (Table 3) shows that soil

temperature uncertainty acts on both atmospheric thermodynamic parameters,

whereas the soil moisture uncertainty acts essentially on the humidity balance. As a

consequence, dispersion is over 4.5% for HR between perturbed soil temperature

cycles. The dispersion is maximum at the beginning of the simulation (about 20%).

For soil moisture perturbed cycles, the dispersion is under 3% for HR except for the

beginning of the simulation, where dispersion is 8.7%. For FAR, the dispersion is

under 2% between the perturbed soil moisture cycles, and between 0 to 9% for the

perturbed soil temperature cycles.

3.3. Forecast Sensitivity to Mesoscale Forcings

1-D modeling allows a description of meteorological phenomenon at the local

scale. Nevertheless, the mesoscale acts upon the local scale through the dynamical
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Guess used for the 12Z run of December 12th, 2002: The reference cycle (stratus initialised at 9Z,
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evolution of the atmosphere, and it is important to consider this interaction for fog

and low cloud prediction. TURTON and BROWN (1987) and later BERGOT (1993) or

BERGOT and GUÉDALIA (1994) have shown the importance of advection phenomenon

in fog formation and evolution.

3.3.1. Forecast sensitivity to cloud cover

The impact of cloud cover is evaluated for three different cycles: the Aladin cloud

cover cycle, which takes into account the cloud forcing based on Aladin forecasts, the
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Figure 5

Hit rate (a) and false alarm rate (b) comparison for LVP forecast for the reference cycle, the perturbed

atmospheric temperature cycles for winter season 2002–2003.
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observed cloud cover persistence (constant cloud forcing during a COBEL run), and

the clear sky cycle. Dispersion on LVP scores between cloud cover perturbed cycles is

almost constant, around 5% for all forecast times for both HR and FAR. The

budget strategy also reveals an important indirect impact on analyses through the

guess field (Table 4). Variability for heat and humidity balances is high with values

around 2.5% for humidity and 0.1% for heat balance with respect to both Aladin

and the persistence cycles.

3.3.2. Forecast sensitivity to geostrophic wind

Geostrophic wind acts indirectly on the turbulence. The budget strategy shows

that geostrophic wind uncertainties influence both heat and humidity balances during

the computation of the guess field. The heat and humidity balance variability is

moderate and is around 0.035% and 0.6% for the two perturbed cycles. Dispersion

for HR is over 4.7%, and a higher spread is observed at 3 h and 6 h with values of 9.2

and 7%. Dispersion for FAR increases slowly during the 12 hours of simulation,

beginning at 4.2% and ending close to 13%.

3.3.3. Forecast sensitivity to horizontal advection

First, it is of interest to note that advection forecasted by Aladin NWP models

generally bring warmer and dryer air into the column compared to the cycle without

advection (Figs. 6a and 6b). The budget strategy confirms a warm (mean = 0.05%

and std = 0.32%) and dry (mean = )1.85% and std = 10.68%) mean advection

effect during the winter (Table 4). Advection has a clear impact on the heat and

humidity balances. Figure 7 shows the balances for each guess field and analysis

during the winter. Variability is higher for the atmospheric profiles from the guess

fields (10.68% for humidity and 0.32% for heat) than those from analyses for both

thermodynamic variables because analyses are forced by observations in the

assimilation process. The consequence of the dry and warm contribution of the

advection is that the reference advection cycle damages the detection of LVP (HR)

compared to the reference cycle (Fig. 8).

Temperature and humidity advection uncertainty impacts on LVP forecasts have

been analyzed by separately perturbing temperature advection and humidity

advection :

� The reference advection cycle (non perturbed),

� ‘‘AT+STD’’ by convention is a colder advection (perturbation of the temperature

advection STD, without perturbation of the humidity advection (AQ)),

� ‘‘AT-STD’’ by convention is a warmer advection (perturbation of the temperature

advection STD, without perturbation of the humidity advection (AQ)),

� ‘‘AQ+STD’’ by convention is a drier advection (perturbation of the humidity

advection STD, without perturbation of the temperature advection (AT)),
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� ‘‘AQ-STD’’ by convention is a moister advection (perturbation of the humidity

advection STD, without perturbation of the temperature advection (AT)).

Figure 8a shows that the LVP score dispersion between temperature advection cycles

is low during the first hours of the simulation. The HR spread becomes more

important between 3 h and 9 h (7.1% at 6 h). Table 2 shows that the FAR dispersion

is close to 10%, and it is almost constant during the 12 hours of simulation.

Both perturbed temperature advection cycles improve the HR score after two

hours. The warmer cycle improves the score of the reference advection cycle, and the

results become comparable to the reference cycle (without advection). This

improvement, which is induced by warmer advection, pleads also in favor of a cold
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Figure 6

Cumulated (a) heat and (b) humidity during the winter season 2002–2003 for the advection cycles. Heat

and humidity values are only computed from temperature and humidity advection inputs for COBEL.
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bias in the Aladin profiles within the boundary layer (i.e., warmer atmospheric

temperature uncertainty).

Figure 8b shows that dispersion between perturbed humidity advection cycles is

very significant. Dispersion is low at the beginning of the simulation and increases

significantly with time (14.6% at 1 h and 36.4% at 9 h for HR). On FAR, dispersion

is close to 10% during the 12 hours of simulation. Compared to the reference

advection cycle, asymmetry is observed between the dry and the moist cycles.

4. Summary and Perspectives

The prediction of low visibility conditions at airports is a challenge for forecasters.

Previous studies have shown the potential of the COBEL-ISBA local numerical

prediction system to fulfill this very specific need. The use of dedicated local

observations and a local assimilation scheme to accurately initialize the COBEL-

ISBAmodel has been conducive to improvements in fog and low cloud prediction (see

BERGOT, this issue). However, despite these improvements, it is necessary to quantify

the forecast quality. One way is to estimate the uncertainties with respect to the input

parameters, such as initial conditions and mesoscale forcings, and to evaluate the

impact of these uncertainties on fog and low cloud forecasts.

In this study, uncertainty distributions for both sources of error have been

evaluated. Firstly, for mesoscale forcings, uncertainty has been estimated under the

hypothesis that uncertainty is correlated with the ‘‘intrinsic’’ spatial and temporal

variability of the Aladin NWP model. In conditions corresponding to fog and low

clouds, it was found that the advection uncertainty is as important as the mean

advection. Secondly, uncertainty of the initial conditions (IC) has been evaluated

from observation errors. Owing to local observations, uncertainty of the IC is small,

except in the case of low cloud initialization.

Table 4

Same as Table 3 for mesoscale forcing cycles

R ¼ ðQperturbed � QreferenceÞ=Qreference Heat (%) Humidity (%)

mean on cycle std mean on cycle std

Geostrophic wind ‘‘+’’ (stronger) )0.005 0.038 0.05 0.63

Geostrophic wind ‘‘)’’ (lighter) 0.003 0.033 )0.17 0.77

Aladin cloud cover 0.022 0.114 )0.28 2.53

Observed cloud cover persistence )0.009 0.077 )0.93 2.45

Advections without STD 0.051 0.328 )1.85 10.68

Temperature advection ‘‘+’’ (colder) )0.14 0.05 )0.23 1.02

Temperature advection ‘‘)’’ (warmer) 0.14 0.05 0.20 0.94

Humidity advection ‘‘+’’ (drier) )0.022 0.034 )5.26 3.10

Humidity advection ‘‘)’’ (moister) 0.025 0.054 5.22 3.21
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The impact of these incertainties for Cobel-Isba forecasts has been evaluated

during a winter season. The study has shown the dependency between forecast time

and dispersion (Fig. 9). IC uncertainties disperse during the first hours of the

simulation (0 to 6 h), whereas the dispersion created by mesoscale forcing becomes

more important in the second half of the simulation (6 to 12 h). The cloud radiative

effect on dispersion is felt throughout the forecast period, as well as low cloud

initialization. The heat and humidity budget analysis applied on the guess field has

increased the understanding of the uncertainty influence on the COBEL-ISBA local

forecast scheme. This strategy has permitted the quantification of the impact of

perturbations on the variational data assimilation scheme. Perturbations grow
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Figure 7

Advection contribution in heat (a) and humidity (b) balances for analysis and guess during the reference

advection cycle for the winter season 2002–2003.
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during the cycle and ‘‘feed’’ analyses through the assimination process. Each cycle

evolves independently according to his perturbation.

One of the major avantages of a local approach (1-D) for short-term forecasts of

fog and low clouds is that runs are ‘‘inexpensive’’. Within the perspective of a Local

Ensemble Prediction System (L-EPS), this computational facility is highly

advantageous in terms of computational time in an operational environment, and

the freedom in the choice of the number of ensemble members is also a benefit. The

study brings out interesting points for building a L-EPS, and they are listed below:
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Figure 8

Hit rate for advection cycles for the winter season 2002–2003 (a). Hit rate comparisons of humidity

advection cycles (b) for the winter season 2002–2003.
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� Construction of a L-EPS should take into consideration that dispersion is higher

for mesoscale forcings compared to the IC. The sampling/calibration should be

carefully done in order to balance both sources of uncertainty;

� construction of a L-EPS should also consider the dependency between run

forecast time and dispersion. Sampling and calibration have to be carefully done

for each forecast time;

� in this study the shape of uncertainty distribution has been evaluated, but not the

magnitude. Consequently, a degree of freedom remains. This could be helpful to

calibrate the dispersion of L-EPS;

� dissymetry (e.g., advection, atmospheric temperature profile) between perturbed

cycles has been observed. Sampling/calibration have to be properly thought;

� a bias in the upper level of the atmospheric temperature profiles seems to affect the

Cobel-Isba forecasts. The effect of this bias on the L-EPS should be studied in detail;

� perturbations could affect the forecasts through the assimilation system.

Consequently, each member of L-EPS needs to have its own assimilation scheme.

All these points offer a starting point for building a L-EPS based on a COBEL-ISBA

local numerical system. The COBEL-ISBA behavior has been determined during this

study and results are encouraging.
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