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A first taste...

Many large-scale circulation features are wind-forced !
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Ekman currents

Introduction :
I First quantitative theory relating the winds and ocean circulation.
I Can be deduced by applying a dimensional analysis to the horizontal

momentum equations within the surface layer. The resulting balance
is geostrophic plus Ekman :

I geostrophic : Coriolis and pressure force
I Ekman : Coriolis and vertical turbulent momentum fluxes modelled as

diffusivities.



Ekman currents

Ekman’s hypotheses :
I The ocean is infinitely large and wide, so that interactions with

topography can be neglected ;
I It has reached a steady state, so that the Eulerian derivative ∂uh

∂ t = 0 ;
I It is homogeneous horizontally, so that (uh.∇)uh = 0,

∇h.(κhu∇h)uh = 0 and by continuity w = 0 hence w ∂uh
∂z = 0 ;

I Its density is constant, which has the same consequence as the
Boussinesq hypotheses for the horizontal momentum equations ;

I The vertical eddy diffusivity κzu is constant.



Ekman currents

Ekman balance :

f k×uE = κzu
∂ 2uE

∂z2

that is :

uE =
κzu

f

∂ 2vE
∂z2

vE = −κzu

f

∂ 2uE
∂z2
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Ekman transports
Computation of vertically-integrated Ekman transports :

I At the surface, by continuity of the turbulent vertical fluxes, and as
we saw for NEMO model in Chapter 2, we have :

τ = ρ0κzu
∂uh

∂z

∣∣∣∣
0

with τ the surface wind stress.
I Contrary to Ekman, we assume that at the bottom of the Ekman

layer hE , vertical turbulent fluxes cancel out : τb = κzu
∂uh
∂z

∣∣
−hE

= 0.
I Vertical integration over the Ekman layer :

UE =
∫ 0

−hE
uEdz =

[
κzu

f

∂vE
∂z

]0

−hE
= +

τy

ρ0f

VE =
∫ 0

−hE
vEdz =

[
− κzu

f

∂uE
∂z

]0

−hE
=− τx

ρ0f
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Ekman transports

This is one of the most useful relations in physical oceanography :
I It predicts that the wind-driven Ekman transports are orthogonal to

surface winds, to their right in the Northern Hemisphere and to their
left in the Southern Hemisphere.

I This explains the location of the main upwelling regions, which are
either due to offshore Ekman transports at the coast (e.g. the
California upwelling system) or to divergent Ekman transports (e.g.
the Equatorial upwelling).

I It also predicts that for a given wind, the Ekman transports will be
stronger at low latitudes. This explains the particularly strong
meridional heat transport by the ocean at low latitudes.

I At the Equator the Coriolis acceleration cancels out and this relation
does not hold anymore.



Ekman transports

Exercise : upwelling rate of the California upwelling system.

We assume an along-coast Northerly wind of v10m =−10m/s and that
the Ekman theory holds at L = 100km off the coast. Deduce the Ekman
volumic transport TE at that distance across a section of width
W = 100km and depth −hE , and the average upwelling rate at the basis
of the Ekman layer w(−hE ) within this coastal box. We assume
CD ∼ 2×10−3, ρa ∼ 1kg/m3, ρ0 ∼ 1000kg/m3, f0 ∼ 10−4s−1.



Ekman transports

Solution : the Ekman volumic transport is
TE = UEW =−CDρav

2
10mW

ρ0f0
=−0.2Sv , and hence by continuity (with no

normal flow at the coast) the average upwelling rate at the basis of the
Ekman layer is w(−hE ) =− TE

WL = +2×10−5m/s ' 2m/day . We deduce
that :

I Any equatorward wind along a North-South coast generates an
offshore Ekman transport which drives Ekman upwelling.

I Although the upwelling magnitude seems modest, due to the strong
near-surface stratification, it generates intense cold and fresh
anomalies in those regions.

I It is the case of all Eastern Boundary subtropical regions.



Ekman pumping
In the absence of a coast, Ekman transports can generate vertical motion
by "Ekman pumping" (upwelling) or "Ekman suction" (downwelling). We
integrate the continuity equation within the Ekman layer :

∫ 0

−hE

∂wE

∂z
dz = −

∫ 0

−hE
(
∂uE
∂x

+
∂vE
∂y

)dz

=⇒ 0−wE (−hE ) = −
∫ 0

−hE

[
∂

∂x
(
κzu

f

∂ 2vE
∂z2 )− ∂

∂y
(
κzu

f

∂ 2uE
∂z2 )

]
dz

=⇒ wE (−hE ) =

[
∂

∂x
(
κzu

f

∂vE
∂z

)− ∂

∂y
(
κzu

f

∂uE
∂z

)

]0

−hE

=
1
ρ0

[
∂

∂x
(
τy

f
)− ∂

∂y
(
τx

f
)

]

wE (−hE ) =
Curl(τ/f )

ρ0

with Curl(a) =
[
∇×a

]
z
the vertical vorticity operator.
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Ekman pumping

Figure 1 – Ekman pumping/suction in the Northern Hemisphere.



Ekman pumping

Interpretations :
I Because Ekman transports are orthogonal to surface winds, any

positive (negative) vorticity of those winds induces a divergence
(convergence) of Ekman transports, which by continuity causes
upwelling (downwelling) at the basis of the Ekman layer.

I The beta effect can also generate vertical motions even for constant
winds, but except at the planetary scale and near the Equator it has
a minor role.

I This explains the deep thermocline at subtropical latitudes between
the tropical Easterlies and the mid-latitude Westerlies (negative
vorticity of winds hence downwelling) and the shallow one at
subpolar latitudes where Westerlies weaken (positive vorticity hence
upwelling).



Ekman pumping

Exercise : average upwelling rate in the subtropical North Atlantic.

We assume that the Easterly wind blows at u110m =−5m/s at
φ1 = 10◦N and that the Westerly wind blows at u210m = +10m/s at
φ2 = 40◦N. Deduce the average downwelling rate wE (−hE ) between
those latitudes. We assume CD ∼ 2×10−3, ρa ∼ 1kg/m3,
ρ0 ∼ 1000kg/m3, f1 ∼ 2×10−5s−1, f2 ∼ 10−4s−1, ∆y = 3000km.



Ekman pumping

Solution : wE (−hE ) = 1
ρ0

−∂τx/f
∂y = Cdρa

ρ0∆y (
−u22

10m
f2
− u12

10m
f1

)'
−2×10−6m/s '−1m/5days. This Ekman suction is one order of
magnitude lower than the Ekman pumping estimated in coastal upwelling
systems. But at the climatological timescale, it is sufficient to induce the
deep subtropical thermocline.



Ekman pumping

Exercise : average Equatorial upwelling.

We assume that the Easterly wind blows at u10m =−5m/s all along the
Equatorial band, and that the Ekman relation is valid at φ1 = 5◦N and
φ2 = 5◦S . Deduce the average poleward Ekman transport over a basin of
width W = 6000km, and the average upwelling rate in the Equatorial
band between both latitudes. Here we assume that f0 =±10−5s−1 at 5◦

of latitude.



Ekman pumping

Solution : the problem is symmetric at both latitudes with only f0

changing sign. We have : TE (φ1) = UE (φ1)W = +
CDρau

2
10mW

ρ0f0
= +20Sv ,

hence TE (φ2) =−20Sv . We deduce by continuity :
w(−hE ) = TE (φ1)−TE (φ2)

WL ' 6×10−6m/s ' 1m/day. This upwelling rate is
much larger than what was found for the subtropical gyre. Indeed, as was
mentioned earlier, Ekman transports are much more intense in the Tropics
because of the reduced value of f0. This Equatorial divergence of Ekman
transports largely explains the cold and fresh anomaly of the surface
Equatorial ocean.



Ekman spiral

Although of lesser importance for oceanography than the
vertically-integrated Ekman transports, the oceanic Ekman spiral allows
to predict :

I The rotation of Ekman currents with depth.
I The relation between the wind stress and the Ekman layer depth.



Ekman spiral
We go back to the Ekman equations that we resolve for the complex
variable v̄E = uE + ıvE , which yields :

v̄E = uE + ıvE

=
κzu

f

(
∂ 2vE
∂z2 − ı

∂ 2uE
∂z2

)
= −κzu

f
ı
∂ 2v̄E
∂z2

that is :
∂ 2v̄E
∂z2 =

ıf
κzu

v̄E

It can be simplified by using the polar form :
ı = e iπ/2 = (e iπ/4)2 = (1+ı√

2
)2. Hence :

∂ 2v̄E
∂z2 =

(1+ ı
hE

)2
v̄E

with hE =
√

2κzu/f the Ekman depth.



Ekman spiral
We go back to the Ekman equations that we resolve for the complex
variable v̄E = uE + ıvE , which yields :

v̄E = uE + ıvE

=
κzu

f

(
∂ 2vE
∂z2 − ı

∂ 2uE
∂z2

)
= −κzu

f
ı
∂ 2v̄E
∂z2

that is :
∂ 2v̄E
∂z2 =

ıf
κzu

v̄E

It can be simplified by using the polar form :
ı = e iπ/2 = (e iπ/4)2 = (1+ı√

2
)2. Hence :

∂ 2v̄E
∂z2 =

(1+ ı
hE

)2
v̄E

with hE =
√

2κzu/f the Ekman depth.



Ekman spiral
We go back to the Ekman equations that we resolve for the complex
variable v̄E = uE + ıvE , which yields :

v̄E = uE + ıvE

=
κzu

f

(
∂ 2vE
∂z2 − ı

∂ 2uE
∂z2

)
= −κzu

f
ı
∂ 2v̄E
∂z2

that is :
∂ 2v̄E
∂z2 =

ıf
κzu

v̄E

It can be simplified by using the polar form :
ı = e iπ/2 = (e iπ/4)2 = (1+ı√

2
)2. Hence :

∂ 2v̄E
∂z2 =

(1+ ı
hE

)2
v̄E

with hE =
√

2κzu/f the Ekman depth.



Ekman spiral

Hence the solution has the form :

v̄E = α exp((1+ ı)z/hE ) + β exp(−(1+ ı)z/hE ),

with α et β two complex integration constants. The boundary conditions
are :

I bounded velocities at the ocean bottom : v̄E < ∞ when z →−∞,
hence β = 0

I surface turbulent fluxes are equal to the wind stress, which we
assume constant and zonal : τ0 = τx i = ρ0κzu

∂uE
∂z .

The surface boundary condition yields :
I ρ0κzu

ℜ(α)+ℑ(α)
hE

= 0 =⇒ ℑ(α) =−ℜ(α),

I ρ0κzu
ℜ(α)−ℑ(α)

hE
= τx =⇒ℜ(α) = τxhE

2ρ0κzu
,
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Ekman spiral

Hence

v̄E = (1− ı)
τxhE
2ρ0κzu

exp
(

(1+ ı)
z

hE

)
=

τxhE√
2ρ0κzu

exp
(

ı
( z

hE
− π

4

))
exp
( z

hE

)

that is

uE = V0 cos
( z

hE
− π

4

)
exp
( z

hE

)
vE = V0 sin

( z

hE
− π

4

)
exp
( z

hE

)
with V0 = (τxhE )/(

√
2ρ0κzu) = τx/(ρ0

√
κzuf ).
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Ekman spiral

Figure 2 – Ekman spiral.



Ekman spiral

Interpretations :
I Ekman depth : the characteristic depth of exponential decay of

wind-driven currents. It reaches typically

hE '
√

2×0.1/10−4 ' 50m << h ! It depends on the wind stress
through turbulent diffusivities κzu. Its Coriolis dependency indicates
that Ekman currents penetrate deeper at low latitudes.

I Surface currents are rotated by −π

4 =−45◦ to surface winds. Their
magnitude is :

V0 =
ρaCD

ρ
√

κzuf
||u10m||2 ∼ 0.02||u10m||

that is typically 20cm/s for ||u10m||= 10m/s. Thus they do not
explain the most intense surface currents.

I They spiral to the right with depth in the Northern Hemisphere and
weaken exponentially.
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Barotropic vorticity equation

It is the core equation for the analysis of gyre circulation, including the
most simple, Sverdrup theory. Principle :

1 Derive an equation for the barotropic, that is the
vertically-integrated, vorticity. A leading-order term in the barotropic
vorticity equation is the so-called "beta effect", which corresponds to
the meridional advection of planetary vorticity βV . Any meridional
motion of water masses induces relative vorticity due to the varying
Coriolis acceleration with latitude df

dy = β .
2 Isolating this so-called "beta term", we get an equation for the

vertically-integrated meridional transport V :

V = RHS/β

with RHS the right hand side of the barotropic vorticity equation.



Barotropic vorticity equation
3 A barotropic streamfunction ΨBT can be constructed from the

vertically-integrated horizontal transport (U,V ) defined by :

∂ ΨBT

∂x
= V

∂ ΨBT

∂y
=−U

Hence the gyre circulation can be comprehensively reconstructed
from the zonal integration of the barotropic vorticity equation :

=⇒ ∂ ΨBT

∂x
= RHS/β

=⇒ΨBT (x ,y) = +
1
β

∫ x

xr
RHS(x ′,y)dx ′

with xr a reference longitude where the streamfunction is assumed
null. xr is usually chosen at the eastern boundary (x < xr ), hence :

ΨBT (x ,y) =− 1
β

∫ xr

x
RHS(x ′,y)dx ′



Barotropic vorticity equation

1 Let us first derive the full barotropic vorticity equation from the
Boussinesq momentum equations, in order to identify all the terms
that can potentially induce a gyre circulation. We recall the
momentum equations derived in Chapter 2 :

∂u

∂ t
+ (u.∇)u− fv = − 1

ρ0

∂P

∂x
+∇h.(κhu∇h)u+

∂

∂z
(κzu

∂u

∂z
)(1)

∂v

∂ t
+ (u.∇)v + fu = − 1

ρ0

∂P

∂y
+∇h.(κhu∇h)v +

∂

∂z
(κzu

∂v

∂z
)(2)



Barotropic vorticity equation

1 Integrating vertically both equations and cross-derivating
∂
∫

(2)dz
∂x − ∂

∫
(1)dz
∂y yields the barotropic vorticity equation :

∂ζBT

∂ t
+Curl

[∫
η

−h
(u.∇)uhdz

]
+ βV =− 1

ρ0
Curl

[∫
η

−h
∇hPdz

]
+Curl

[∫
η

−h
∇h.(κhu∇h)uhdz

]
+

Curl(τ )

ρ0

⇐⇒ ∂ζBT

∂ t
+Curl(A) + βV =

1
ρ0

J(Pb,h) +Curl(Dh) +
1
ρ0

Curl(τ )

with ζBT = ∂V
∂x −

∂U
∂y the barotropic vorticity, J(a,b) = ∂a

∂x
∂b
∂y −

∂a
∂y

∂b
∂x

the Jacobian operator, Pb the bottom pressure, A and Dh advection
and horizontal turbulent diffusion.
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Barotropic vorticity equation

2 Hence once the gyre circulation has reached a steady state, ∂ζBT

∂ t = 0
and we can diagnose its circulation as :

V =
1
β

[
−Curl(A) +

1
ρ0

J(Pb,h) +Curl(Dh) +
1
ρ0

Curl(τ )

]
3 and integrating zonally :

=⇒ΨBT (x ,y) =− 1
β

∫ xr

x

[
−Curl(A(x ′,y)) +

1
ρ0

J(Pb(x ′,y),h(x ′,y))

+Curl(Dh(x ′,y)) +
1
ρ0

Curl(τ (x ′,y))

]
dx ′
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Barotropic vorticity equation

Physically, the equation states that the gyre circulation is set by the
equilibration of the beta effect with :

I The vorticity of momentum advection −Curl(A) ;
I The interaction of bottom pressure with bathymetry 1

ρ0
J(Pb,h) (the

so-called bottom pressure torque) ;
I The vorticity of lateral dissipation Curl(Dh) ;
I The wind stress (and/or bottom stress) curl : 1

ρ0
Curl(τ ).
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Barotropic vorticity equation

Most of the work has been done regarding the gyre circulation !

I It describes all the physical contributions that can drive or modulate
it.

I It is solvable numerically, provided the forcings to its right hand side
are known. It means that the gyre circulation can be reconstructed
from observed estimates of those forcings, and that in a numerical
model the physical drivers of any gyre can be analyzed.

I Note that ζBT = ∆hΨBT , so that a cyclonic gyre will have a positive
curvature of the barotropic streamfunction, that is a negative
streamfunction, and reversely for an anticyclonic gyre.



Sverdrup balance

The hypotheses of Sverdrup’s theory are very similar to those of Ekman,
with three notable exceptions :

I No horizontal homogeneity is assumed, precisely because it aims at
predicting the horizontal structure of the gyre. However, advection
and lateral turbulent diffusion of momentum are assumed negligible
(linear and inviscid hypotheses) ;

I The hypothesis of constant κzu is withdrawn, because it is
unnecessary to predict vertically-integrated transports.

I Because the momentum equations are integrated down to the
bottom, two assumptions are necessary to neglect the role of
bathymetry : no bottom friction τb = 0 and flat bottom ∇hh = 0.

Hence the momentum equations include only geostrophic and Ekman
dynamics :

−f k×uh =− 1
ρ0

∇hP +
∂

∂z
(κzu

∂uh

∂z
)
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Sverdrup balance

From the full development of the vorticity equation done above, it is
trivial to deduce the Sverdrup balance :

βV =
1
ρ0

Curl(τ )

which yields after zonal integration the predicted barotropic
streamfunction :

ΨBT (x ,y) =− 1
ρ0β

∫ xr

x
Curl(τ (x ′,y))dx ′



Sverdrup balance

From the full development of the vorticity equation done above, it is
trivial to deduce the Sverdrup balance :

βV =
1
ρ0

Curl(τ )

which yields after zonal integration the predicted barotropic
streamfunction :

ΨBT (x ,y) =− 1
ρ0β

∫ xr

x
Curl(τ (x ′,y))dx ′



Sverdrup balance

From the full development of the vorticity equation done above, it is
trivial to deduce the Sverdrup balance :

βV =
1
ρ0

Curl(τ )

which yields after zonal integration the predicted barotropic
streamfunction :

ΨBT (x ,y) =− 1
ρ0β

∫ xr

x
Curl(τ (x ′,y))dx ′



Sverdrup balance

Figure 3 – Zonal wind stress used in Sverdrup’s model (left) and streamlines
when integrating from the eastern boundary.



Sverdrup balance

Great success of Sverdrup theory : it correctly predicts the location of the
main subtropical and subpolar gyres.

I Over a given basin, the sign of the average wind stress curl at a
given latitude gives the correct direction for the meridional flow in
the interior ocean.

I At subtropical Northern latitudes, the negative curl is consistent with
agerage southward flow in the interior, that is positive values of ΨBT .

I At subpolar Northern latitudes, the positive curl is consistent with
agerage northward flow in the interior, that is negative values of
ΨBT .

It also gives reasonable quantitative predictions for the interior transport
of subtropical gyres.



Sverdrup balance

Exercise : estimation of the Sverdrup transport of North Atlantic and
Pacific subtropical and subpolar gyres.

We assume that the Atlantic basin has a width W ' 6000km with purely
zonal winds of u10m(10◦N) =−5m/s, u10m(40◦N) = +10m/s and
u10m(75◦N) = 0m/s varying linearly between those latitudes. Deduce
from the Sverdrup relation the integral meridional transport at 30◦N and
60◦N. Do the same in the Pacific, assuming the same wind profile and
W ' 8000km. We assume CD ∼ 2×10−3, ρa ∼ 1kg/m3,
ρ0 ∼ 1000kg/m3, β (30◦N)' 2×10−11m−1s−1,
β (60◦N)' 10−11m−1s−1.



Sverdrup balance

The zonal integration of the Sverdrup relation yields :
ψBT (30◦N) = −1

ρ0β(30◦N)

∫ xE
xW

Curl(τ )dx = W
ρ0β(30◦N)

∂τx
∂y =

CdρaW
ρ0β(30◦N)

u2
10m(30◦N)+u2

10m(60◦N)
L ∼+20Sv and similarly we get

ψBT (60◦N)∼−40Sv .
I Once again, a gyre of negative vorticity will have positive values of

its streamfunction, and vice versa for a cyclonic gyre.
I Although we get the right sign and order of magnitude for the

basin-integrated gyre circulation, we largely underestimate it, which
is a typical bias of Sverdrup theory.

I In the Pacific, the higher basin width by 25% mechanically induces a
stronger basin-integrated Sverdrup transport by 25%.



Sverdrup balance

a. Interior 
geostrophic flow 

from Sverdrup 
theory

b. Relative 
difference to 

observed flow

c. North Atlantic gyre transport

- Observed
- - Sverdrup theory

Figure 4 – a) Interior geostrophic transport predicted from Sverdrup theory and
b) relative error (from −1 =−100% to +1 = +100%) with respect to ARGO
measurements (Gray and Riser 2014). c) Zonal integration of the gyre transport
at specific North Atlantic latitudes, either observed or from Sverdrup theory
(source : Colin de Verdière 2016).



Sverdrup balance

Due to its extreme simplifications, the Sverdrup theory poses a series of
issues :

I It is known to fail in representing the western side of gyres and
subpolar gyres, which highly limits its domain of validity.

I Also, it tends to largely underestimate (typically by a factor ∼ 3) the
magnitude of both subtropical and subpolar gyre transports.

I Most importantly, it does not predict any return flow for the gyres,
which is however required by continuity. In particular, it does not
predict whether the return flow must occur in the eastern or western
boundary : the integration of the Sverdrup relation from either the
eastern or western boundary gives identical results in the interior.



Interpretation in terms of Ekman and geostrophic flow

The Sverdrup balance = vorticity balance of an Ekman + gestrophic
ocean

1 In the Ekman layer the vertically-integrated vorticity equation writes
as :

βVE + f
∫

η

−hE
∇h.uhdz =

1
ρ0

Curl(τ )

=⇒ βVE − f (w(0)−w(−hE )) =
1
ρ0

Curl(τ )

=⇒ βVE + fw(−hE ) =
1
ρ0

Curl(τ )

One additional term : the planetary vortex stretching fw(−hE ).
Related to the conservation of planetary angular momentum : any
positive stretching of a water column induces positive vorticity, and
vice versa for negative stretching. It acts as a vorticity coupling
between the Ekman layer and the interior ocean.
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Interpretation in terms of Ekman and geostrophic flow

2 Indeed, in the latter we have the geostrophic vorticity balance :

βVg + f
∫ −hE
−h

∇h.uhdz = 0

=⇒ βVg − f (w(−hE )−w(−h)) = 0
=⇒ βVg = fw(−hE )

Hence wind stress imparts vorticity into the Ekman layer, most of
which is transmitted to the geostrophic interior ocean by Ekman
pumping. It can only be equilibrated in the geostrophic interior by
the beta effect, which ultimately equilibrates the wind stress.
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Interpretation in terms of Ekman and geostrophic flow
The sum of both balances yields the Sverdrup relation :

βVE + βVg = βV =
1
ρ0

Curl(τ )

which is equivalent to the wind stress decomposition :

− β

ρ0f
τx +

f

ρ0
Curl(τ/f ) =

1
ρ0

Curl(τ )

I Because the first term on the left hand side is relatively smaller, the
Sverdrup transport is mostly a response of the geostrophic interior to
the wind stress curl.

I Most importantly, because f /β ∼ 107m,
vg/w(−hE )∼ f /(βH)∼ 2000, so that an Ekman pumping as low as
1m/2days will induce meridional velocities of 1cm/s in the interior
ocean.

Ekman pumping is important not only for near-surface dynamics, but also
for the circulation of the interior ocean.
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Interpretation in terms of Ekman and geostrophic flow

Figure 5 – Schematic link between wind stress, surface Ekman transport, interior
geostrophic transport and gyre circulation (Talley et al 2012).

The wind stress curl induces a convergence of Ekman transports (Ekman
suction) near surface, which activates an interior southward transport that
sets up the Sverdrup balance.



Outline

The Ekman currents and Sverdrup balance

The western intensification of gyres

The Southern Ocean circulation

The Tropical circulation



Bottom friction : Stommel model

First model to predict the western return flow of the gyre circulation.
I Additional force : bottom friction force modelled as a linear drag on

barotropic vorticity : τb =−rζBT =−r∆hΨBT .
I The barotropic vorticity equation becomes :

βV =
1
ρ0

Curl(τ )− r∆hΨBT

I Analytical solution for ΨBT that closes the gyre circulation !
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Bottom friction : Stommel model

Figure 6 – Results from Stommel’s model : streamlines (left) sea surface height
(right) in three idealized cases : no Earth rotation (f = 0, top), f plane (f = f0,
middle) and beta plane (f = f0 + βy , bottom).



Bottom friction : Stommel model

Interpretation :
I No rotation : anticyclonic gyre forced by anticyclonic wind stress,

without assymetry.
I f plane : same circulation because no Coriolis in the barotropic

vorticity balance.
I beta plane : zonal assymetry :

I To the east, the cyclonic beta effect partially compensates the
anticyclonic wind stress, so that less bottom friction is needed for the
flow to reach a vorticity balance. As friction is proportional to
vorticity, this means that the flow must slow down.

I To the west, both the beta effect and the wind stress impart
anticyclonic vorticity. Hence the bottom friction must be enhanced to
balance both terms. This is done through the intensification of the
northward flow.

I As the basin is closed, by continuity the northward and southward
transports must be equal, which implies a narrow western boundary
northward flow and a wide interior southward flow.



Bottom friction : Stommel model

Interest :

I It explains the gyre zonal assymetry.
I Indeed, because of the beta effect, an enhanced cyclonic vorticity source

is needed at the western boundary, and a weakened one in the interior
ocean.

Limitations :

I Bottom velocities would need to be unrealistically large for this
bottom friction to have a significant role in the vorticity balance.

I The predicted western boundary current is far too narrow compared
to observations.
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Lateral friction : Munk model

Same approach as Stommel, but lateral dissipation instead of bottom
friction. The barotropic vorticity equation becomes :

βV = Curl

[∫
η

−h
∇h.(κhu∇h)uhdz

]
+

1
ρ0

Curl(τ )

He assumed the eddy diffusivity coefficient to be constant : κhu = A, so
that the lateral diffusion term writes as :

Curl

[∫
η

−h
∇h.(κhu∇h)uhdz

]
= ACurl(∆hUh)

= A∆hζBH
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Lateral friction : Munk model

Hence the barotropic vorticity balance becomes :

βV = A∆hζBH +
1
ρ0

Curl(τ )

I Horizontal velocities are assumed null at the border (no-slip
boundary condition), so that lateral diffusivity plays the same role as
Stommel’s bottom friction : it slows down the gyre circulation.

I A notable difference is that it acts preferentially along the borders,
whereas bottom friction is also active in the interior.
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Lateral friction : Munk model

Figure 7 – Meridional wind and wind stress curl in Munk’s model (left) and
barotropic streamfunction (right) in an idealized North Atlantic basin.



Lateral friction : Munk model

I Results are very similar to Stommel’s model, with only one major
improvement : transports cancel at the borders. He also applied a
more realistic meridional wind profile.

I However, like Stommel’s model, his lateral dissipation requires
unrealistic horizontal velocities at the western boundary to balance
the vorticity equation. Hence it also predicts a too narrow western
boundary current.

Less intuitive terms of the vorticity balance intervene in the western
intensification of gyres !



Topographic torques

The role of topography appears explicitely in the barotropic vorticity
equation as the so-called bottom pressure torque term.

In the barotropic case, its physical effect is to attach the flow to
topographic contours, or more precisely to geostrophic f /h contours.



Topographic torques
a. Ψ

BT

b . Bottom pressure torque

a. Ψ
BT

c . Wind stress curl

d . Near-surface velocities

Figure 8 – a) Barotropic streamfunction in an ocean climate model and
contributions of b) the bottom pressure torque and c) the wind stress curl
(Yeager 2015). d) Near-surface currents superimposed to the 1000m and 3000m
isobaths (black contours) in the Labrador Sea from an high-resolution ocean
model (Saenko et al 2014).



Topographic torques

I High-latitude circulation is relatively barotropic due to the
deep-reaching mixed layers and the beta effect becomes weak. Thus
currents follow closely topography.

I The bottom pressure torque is at least as important as the wind
stress curl in the barotropic vorticity balance.



Topographic torques

Bottom pressure torque as a torque by solid Earth :

J(Pb,h) = 0 ⇐⇒ Pb = P(h)

the bottom pressure torque is null if and only if bottom pressure is
constant along isobaths : in this case the force exerted by solid Earth on
the ocean bottom has no torque !



Topographic torques
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Topographic torques
Bottom pressure torque as a bottom geostrophic vortex stretching :
geostrophic vorticity balance with varying bathymetry −h(x ,y) for a
barotropic ocean (ρ = ρ0) :

βV =
1
ρ0

J(Pb,h)

=
1
ρ0

(
∂Pb

∂x

∂h

∂y
− ∂Pb

∂y

∂h

∂x
)

= f (vg (−h)
∂h

∂y
+ug (−h)∂y

∂h

∂x
)

= f ug(−h).∇h

= f
dh

dt
= −fw(−h)

When bottom pressure does not follow isobaths, geostrophic velocities
push the fluid up or down the bathymetry, which generates a bottom
geostrophic vortex stretching !
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Topographic torques

Now remembering that βV = h df
dt for a barotropic fluid, we deduce :

h
df

dt
− f

dh

dt
= 0

=⇒ 1
h

df

dt
− f

h2
dh

dt
= 0

⇐⇒ df /h

dt
= 0

This expresses the Lagrangian conservation of potential vorticity, which in
this simple case is f /h.



Topographic torques

Figure 9 – North Atlantic geostrophic f /h contours (Peter Rhines’s lecture).



Topographic torques

Important consequence for the gyre circulation :
I Bathymetric changes along the flow are sufficient to equilibrate the

beta effect induced by any meridional transport. More specifically, a
northward flow can be equilibrated if it moves down the bathymetry,
and vice versa for a southward flow.

I Thus a geostrophic circulation can be closed if geostrophic contours
f /h are closed, which is the case for much of the North Atlantic
subpolar gyre.

I As f contours are purely zonal, a strong meridional deformation of
f /h contours means that the topographic slope largely dominates
over the beta effect in the barotropic vorticity balance.



Topographic torques

Adding the wind stress forcing back to the barotropic vorticity balance we
get the so-called topographic Sverdrup balance :

βV = f ug(−h).∇h+
1
ρ0

Curl(τ )

There is no need of any energy sink such as bottom friction or lateral
dissipation to explain the western boundary return flow of gyres !

I It is enough for the western boundary current to flow down the
topography as it goes north.

I Recent results show that western boundary currents are relatively
conservative : the bottom pressure torque is a better candidate than
bottom friction and lateral dissipation to permit the meridional mass
flux in the western boundary.
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Topographic torques

The ocean is generally baroclinic :
I The three-dimensional density structure matters, because the bottom

pressure corresponds to the weight of the overlying ocean column.
I Hence so-called "buoyancy-driven" gyres can exist, which are not

driven by the wind stress curl but by buoyancy fluxes (heat and water
fluxes). This is for instance the case of cyclonic gyres driven by
buoyancy loss (cooling or evaporation) in semi-enclosed seas (e.g.
the Nordic Seas, Baltic Sea, Mediterranean Sea, Labrador Sea).



Topographic torques
°C

Figure 10 – Mean surface temperature and velocity of an idealized
buoyancy-driven cyclonic gyre driven by no wind stress and a surface heat loss of
Qtot =−200W /m2 (Spall 2003).



Recirculation gyres

The only term that has not been analyzed so far : non-linear vorticity
advection :

Curl(A) = Curl

[∫
η

−h
(u.∇)uhdz

]
I Redistribution of vorticity by the ocean in motion : null net effect but

explains the presence of intense western recirculation gyres.
I Nonlinear advection because, contrary to the planetary vorticity

advection βV =
∫ η

−h
df
dt dz , it is nonlinear in velocities. Significant

values only where intense velocities.



Recirculation gyres

B = beta effect
W = wind stress
F = lateral friction (= dissipation)
N = nonlinear advection
o, +, * = transitional regimes

a. Non-advective b. Advective

c. Advective : 
vorticity balance

ψ
BT

ψ
BT

ζ+f ζ+f

Figure 11 – Barotropic circulation ΨBT and potential vorticity contours ζ + f in
an idealized subtropical gyre model a) with weak advection (A ∝ Dh/5) and b)
with intense advection (A ∝ Dh) and c) vorticity balance per main dynamical
region in the advective case (Boning 1986). Author refers to N as non-linear
advection A and F as lateral friction, which is identical to lateral dissipation Dh.



Recirculation gyres

Vorticity advection can become a dominant term in a so-called
"recirculation gyre" ! The barotropic vorticity balance is dominated there
by :

βV = −Curl
[∫

η

−h
(u.∇)uhdz

]
= −U.∇ζBT

meaning that the advection of planetary vorticity compensates for the
advection of relative vorticity.

I Mechanism : convergence of anticyclonic vorticity to the east of the
boundary current, and reversely to the west. In response of the beta
effect, southward flow to the east, and a northward flow to the west.

I With this mechanism, the gyre circulation can be highly intensified
without any additional source of energy.
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Vorticity advection can become a dominant term in a so-called
"recirculation gyre" ! The barotropic vorticity balance is dominated there
by :
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η
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Recirculation gyres

Lagrangian interpretation : conservation of potential vorticity, which
writes in this flat bottom barotropic case as :

d(hf + ζBT )

dt
= 0

I Neglecting the forcing (wind stress) and dissipation (lateral
diffusion), the flow must follow geostrophic contours which have
constant hf + ζBT .

I In most of the domain those contours are blocked by boundaries
because they are mostly zonal and dominated by f , and as a
consequence water masses cannot circulate freely.

I Within the recirculation gyre, because of an intense ζBT , the
potential vorticity is homogenized and water parcels can freely
undergo an intense circulation.
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Recirculation gyres

B = beta effect
W = wind stress
F = lateral friction (= dissipation)
N = nonlinear advection
o, +, * = transitional regimes

a. Non-advective b. Advective

c. Advective : 
vorticity balance

ψ
BT

ψ
BT

ζ+f ζ+f

Figure 12 – Barotropic circulation ΨBT and potential vorticity contours ζ + f in
an idealized subtropical gyre model a) with weak advection (A ∝ Dh/5) and b)
with intense advection (A ∝ Dh) and c) vorticity balance per main dynamical
region in the advective case (Boning 1986). Author refers to N as non-linear
advection A and F as lateral friction, which is identical to lateral dissipation Dh.



Recirculation gyres
a. Ψ

BT

b. Mean advection

c. Eddy advection

d. Pressure torque

e. Wind stress

Figure 13 – a) Barotropic circulation ΨBT in an eddy-resolving model and
contributions of b) mean advection, c) eddy advection, d) bottom pressure
torque and e) wind stress curl (Wang et al 2017).



Recirculation gyres

I High-resolution ocean models resolve those recirculation and have
intensified gyres, which is not the case for low-resolution models.

I The respective contributions of transient eddies and the mean flow
can be separated by decomposing the vorticity advection term :

βV = −U.∇ζBT

= −U.∇ζBT −∇.U′ζ ′BT

with the classical Reynolds decomposition X = X +X ′, both resolved
(with X either U or ζBT ). Results show :

I Both mean and eddy advection are important, although once again
the bottom pressure torque appears as a key ingredient.

I Both the subtropical and subpolar gyres are concerned by this
intensification, mostly along their western boundary.
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Eastern shadow zones

Limitations of the steady barotropic framework :
I It is steady : it does not tell

I how the time-dependent circulation sets up gyres (Rossby wave
dynamics)

I how the most energetic transient eddy dynamics interacts with it
(dynamical instabilities and energy cascades)

I It is barotropic : no information on
I vertical overturning circulations in the meridional or zonal plane
I the vertical distribution of the gyre transport and the ventilation of

the interior ocean

We now try to identify whether some layers in the water column might be
unventilated. For that, we abandon the barotropic vorticity formalism and
introduce some depth dependence.



Eastern shadow zones
a. Ekman suction

Subduction

Mixed layer

Permanent 
thermocline

Shadow zone

Ventilation

Ventilation

Subduction

Subpolar 
front

b. Subduction rate

c. Winter MLD

d. Meridional section of isopycnal layers

e. Zonal section of isopycnal layers

f. Isopycnal velocities

Figure 14 – a) Ekman suction rate (m/year), b) subduction rate (m/year), c)
March mixed layer depth (MLD, m), d) meridional section at 42◦W and e)
zonal section at 35◦N of isopycnal layer depth (density every 0.15kg/m3,
26.70kg/m3 layer shaded) and f) isopycnal velocities in the 26.55kg/m3 layer.



Eastern shadow zones

I Due to Ekman pumping, the trajectory of water masses around the
gyres is not horizontal but slanted. Given by the isopycnal slope
because in the interior ocean, water parcels are mostly adiabatic.

I The mixed layer deepens with latitude : hence water masses exit the
mixed layer (they are subducted) to the north and then they flow
southwest while sinking, isolated from surface.

I Such water masses are named mode waters. They can remain for
decades below the mixed layer before resurfacing along the western
boundary. They ventilate the interior of subtropical gyres.

Mode waters do not reach the southeastern corner !



Eastern shadow zones

Figure 15 – Observed O2 minimum (black contours) in relation to a) main
Ekman upwelling regions (shaded grey) and b) mode water trajectories (grey
contours) (Karstensen et al 2008).

I Eastern subtropical O2 minimum.
I Associated Ekman pumping : intense biological activity.
I Dynamical isolation from the subtropical gyre.



Eastern shadow zones
Simplest model : the so-called 2.5-layer model.

x
E

y
SSubduction line

f/h
2
=constant

Figure 16 – Horizontal sketch of the shadow zone in the 2.5 layer geostrophic
model (adapted from Vallis 2006).



Eastern shadow zones

Simplest model : the so-called 2.5-layer model.
I Two upper layers of constant density in motion, and a lower layer at

rest.
I At some latitude (say y = yS), layer 2 is subducted beneath layer 1

and ventilates the interior ocean while conserving its potential
vorticity, which is in this geostrophic case f /h2.

I Hence any southward motion reduces f and must be accompanied by
a shoaling of layer 2.

I At the eastern boundary xE , this is forbidden by the no normal flow
boundary condition : any variation of h2 along the boundary would
induce a zonal flow ug2 towards the continent.

I Hence once water parcels have subducted at the eastern boundary
(at the coordinates (xE ,yS)), they must move southwestward to
satisfy both potential vorticity conservation and no normal flow at
the eastern boundary.



Outline

The Ekman currents and Sverdrup balance

The western intensification of gyres

The Southern Ocean circulation

The Tropical circulation



Ocean heat content trend 1979-2015

Figure 17 – 1979–2015 ocean heat content trend map and zonally-integrated as
a function of latitude and depth (Shi et al 2018).

The Southern Ocean stands out as the main heat storage region !



Specficities of the Southern Ocean :
I No gyre circulation, instead a mostly zonal flow, the Antarctic

Circumpolar Current.
I The longest (24,000km) and most intense (∼ 150Sv) oceanic

current of the world ocean.
I The main absorption area of the anthropogenetic heat (Fig.17) and

CO2 anomalies.



Meridional overturning

"Deacon Cell" = wind-driven meridional overturning cell.
I Surface winds are essentially zonal, so that Ekman transports are

northward (to the left in the southern hemisphere).
I Wind stress curl forms a dipole north and south of the Westerly jet,

so that Ekman pumping occurs south, and Ekman suction north of
this jet.

I By continuity, there must be a southward geostrophic branch in the
interior ocean !



Meridional overturning
a. Meridional overturning circulation b. Wind stress curl

c. Geostrophic f/h contours d. Barotropic circulation ψ
BT

x10 N/m³⁻⁸

Figure 18 – a) Deacon Cell from an idealized model, b) average wind stress curl,
c) geostrophic f /h contours and d) barotropic streamfunction ΨBT from an
idealized model (Doos et al 1994, LT’s lecture, Olbers et al 2007).



Meridional overturning

Vorticity balance separately for the surface Ekman layer and the interior
geostrophic ocean.

I In the Ekman layer :

βVE + fw(−hE ) =
1
ρ0

Curl(τ )

The wind vorticity input is partly equilibrated in the Ekman layer,
and partly transmitted to the underlying geostrophic interior by
vortex stretching.

I In the interior geostrophic layer :

βVg = fw(−hE ) +J(Pb,h)

beta effect and bottom pressure torque balance this vorticity input.
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Meridional overturning
The fundamental role of topography :

I Over a zonal integral, by continuity

< VE >=−< Vg >

with < X >= 1
LACC

∫ xR+
xR−

Xdx the zonal mean of a quantity X over the
whole circumpolar zonal ring of length LACC (with xR an arbitrary
reference longitude).

I Hence the zonally-integrated vorticity balance writes as :

< βVE + βVg > = 0

=
1
ρ0

< Curl(τ ) > + < J(Pb,h) >

Without the bottom pressure torque, the interior ocean could not be in
geostrophic balance !
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Meridional overturning
a. Meridional overturning circulation b. Wind stress curl

c. Geostrophic f/h contours d. Barotropic circulation ψ
BT

x10 N/m³⁻⁸

Figure 19 – a) Deacon Cell from an idealized model, b) average wind stress curl,
c) geostrophic f /h contours and d) barotropic streamfunction ΨBT from an
idealized model (Doos et al 1994, LT’s lecture, Olbers et al 2007).



Meridional overturning

I The fact that the geostrophic interior has to lean on the topography
to equilibrate the wind stress curl also explains why the Deacon Cell
extends very deep in the water column.

I Wind-driven Ekman flows are typically very shallow (hE ∼ 50m), so
that the associated vertical motions do not usually extend very deep.

I This coupling mechanism involving the bathymetry in the Deacon
Cell is a striking illustration of how some wind-driven flows can
ventilate the deep ocean.



Meridional overturning
Why have we not started the analysis of meridional circulation by using
the barotropic vorticity equation ?

I Because due to the absence of any continental barrier, there can be
no net meridional flow across the Southern Ocean !

I The Sverdrup balance cannot hold because there is no western
boundary to support a northward return flow and hence ensure
continuity. If we assume vorticity advection Curl(A) and turbulent
horizontal diffusion Curl(Dh) to be small, the zonal mean barotropic
vorticity equation gives :

1
ρ0

< J(Pb,h) > +
1
ρ0

< Curl(τ ) >= 0

The beta effect is cancelled in the absence of a net meridional flow.
I Although this equation states nothing about the flow, we see once

again the importance of the bottom pressure torque and hence of
topography. The strong wind stress curls can be equilibrated by a
bottom geostrophic flow across isobaths.
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Meridional overturning

However, at a given longitude band, some net meridional transport can
still occur :

βV =
1
ρ0

J(Pb,h) +
1
ρ0

Curl(τ )

I Locally, the wind stress curl and above all the bottom pressure
torque can generate a net meridional flow.

I This is the source of the so-called "standing meanders" of the
Antarctic Circumpolar Current
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Meridional overturning
a. Meridional overturning circulation b. Wind stress curl

c. Geostrophic f/h contours d. Barotropic circulation ψ
BT

x10 N/m³⁻⁸

Figure 20 – a) Deacon Cell from an idealized model, b) average wind stress curl,
c) geostrophic f /h contours and d) barotropic streamfunction ΨBT from an
idealized model (Doos et al 1994, LT’s lecture, Olbers et al 2007).



Zonal circulation

How does a zonal wind stress induce a zonal current like the Antarctic
Circumpolar Current ? This intuitive relation is complicated by the Coriolis
acceleration which induces a meridional Ekman response.

I Pressure gradient build-up by Ekman transports : wind-driven
currents (the Ekman currents) are meridional for a zonal wind, they
can drive an intense zonal geostrophic flow through the coupling
with tracers.

I To illustrate that, let us consider how meridional Ekman transports
can intensify a meridional density front.



Zonal circulation
Initial constant density gradient, purely thermal ∂ρ

∂y (t = 0) =−αθ
∆θ

L .
Zonal wind stress τ = τx(y)i and no heat source Θ̇ = 0. In the Ekman
layer, the temperature conservation is :

hE
∂θ

∂ t
=−VE

∂θ

∂y

that is, temperature trends are driven by the convergence of the Ekman
heat flux. Hence :

hE
∂

∂ t
(
∂θ

∂y
) = − ∂

∂y
(VE

∂θ

∂y
)

= −∂VE

∂y

∂θ

∂y

= −w(−hE )
∂θ

∂y

neglecting ∂2θ

∂y2 and ∂hE
∂y . We deduce :

∂θ

∂y
(t) =

∂θ

∂y
(t = 0)exp

[
− w(−hE )

hE
t

]
=

∆θ

L
exp

[
+

∂τx/f

∂y

√
f

ρ0
√
2κzu

t

]



Zonal circulation

I Where Ekman pumping is negative, that is to the north of the
Deacon Cell, Ekman transports tend to exponentially increase any
initial meridional temperature gradient.

I There is also a dependency to the Ekman depth hE because for a
given Ekman pumping, the thinner the Ekman depth, the stronger
the resulting temperature trend within the mixed layer.

I Because of the meridional gradient of solar radiation, there is always
a meridional temperature gradient in the Southern Ocean, so that
this mechanism is always active.

I This enhanced density gradient mechanically increases zonal
geostrophic transports !



Zonal circulation
a. The Antarctic Circumpolar Current b. Meridional sea level and temperature section

c. Zonal density section at 60°S
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Figure 21 – a) Main fronts of the Antarctic Circumpolar Current (ACC), b) their
sea level and temperature signatures, and c) zonal potential density section at
60◦S (Sokolov et al 2009, Olbers et al 2007).



Zonal circulation
The Antarctic Circumpolar Current is entirely determined by the interior
geostrophic flow :

Ug =
∫

η

−h
ugdz

=
∫

η

−h

[
ug (−h) +

∫ z

−h

∂ug
∂z

(z ′)dz ′
]
dz

= hug (−h) +
∫

η

−h

[∫
η

z ′

∂ug
∂z

(z ′)dz

]
dz ′

= hug (−h) +
∫

η

−h
z ′

∂ug
∂z

(z ′)dz ′

This gives with the thermal wind relation :

Ug = hug (−h) +
g

ρ0f

∫
η

−h
z

∂ρ

∂y
dz

' g

ρ0f

∫
η

−h
z

∂ρ

∂y
dz



Zonal circulation

We have just written the same transport equation as in the Drake Passage
exercise. It illustrates the coupling between the dynamics and tracers :

I intense geostrophic velocities are driven by meridional density (mostly
temperature) gradients,

I themselves enhanced by the Ekman pumping, although also driven by
surface buoyancy (heat and water) fluxes.



Zonal circulation
a. The Antarctic Circumpolar Current b. Meridional sea level and temperature section

c. Zonal density section at 60°S

Subantarctic front

Polar front

Southern ACC front

Drake 
Passage

Kerguelen 
Plateau

Pacific 
Antarctic 

Ridge
Mid-Ocean 

Ridge

Figure 22 – a) Main fronts of the Antarctic Circumpolar Current (ACC), b) their
sea level and temperature signatures, and c) zonal potential density section at
60◦S (Sokolov et al 2009, Olbers et al 2007).



Zonal circulation

Structure of the Antarctic Circumpolar Current :
I Surface-intensified just like meridional density gradients.
I Constituted of several fronts which delimitate sub-currents at

different latitudes.
I Its vertical extent is among the largest for a surface-intensified

current : matters for both surface and deep water transports.



Zonal momentum balance
What slows down the Antarctic Circumpolar Current ?

I It is accelerated by the zonal wind stress.
I Like the gyre circulation, neither lateral dissipation nor bottom

friction are strong enough to equilibrate wind stress.
I The "bottom form drag". Indeed, the zonally and

vertically-integrated zonal pressure force is :

<
∫

η

−h

∂P

∂x
dz >=<

∂

∂x
(
∫

η

−h
Pdz)>−< p(η)

∂η

∂x
>+<P(−h)

∂ −h

∂x
>

'−< P(−h)
∂h

∂x
>

For the zonal pressure force to slow down zonal motion, bottom
pressure must be on average higher upstream than downstream of
seamounts. In this case :

The pressure force exerted by seamount on the ocean is directed
westward, hence compensating for the surface wind stress.



Zonal momentum balance
a. The Antarctic Circumpolar Current b. Meridional sea level and temperature section

c. Zonal density section at 60°S
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Figure 23 – a) Main fronts of the Antarctic Circumpolar Current (ACC), b) their
sea level and temperature signatures, and c) zonal potential density section at
60◦S (Sokolov et al 2009, Olbers et al 2007).



Zonal momentum balance

I Because velocities are surface-intensified, bottom pressure gradients
are dominated by surface pressure, that is by sea level variations,
although they are almost entirely equilibrated by baroclinic pressure
gradients so that bottom velocities are small.

I Positive sea level anomaly, although also a negative density anomaly,
upstream of the main topographic accidents, and reversely
downstream of them.



Role of eddies
a. Ocean meridional heat transport

b. Polar front location

c. Polar front meridional 
heat transport

Total

Mean

Eddy

Figure 24 – a) Meridional heat flux decomposed between the mean and eddy
transport in a high-resolution ocean model, and b-c) its decomposition as a
function of depth and longitude along the Polar Front (Griffies et al 2015,
Duffour et al 2016).



Role of eddies

I Similarly to the atmosphere, the Southern Ocean poleward heat
transport is dominated by transient eddies. This is a unique
characteristic in the world ocean which transports heat by the mean
circulation at all other latitudes.

I In the Southern Ocean, the mean meridional circulation, the Deacon
Cell, transports heat equatorward.

I On the contrary, eddy heat advection is poleward. The physical
mechanism is identical to the atmosphere : baroclinic instability
advects buoyancy (mostly heat) southward.



Role of eddies
"Standing meanders" can advect heat poleward :

I Let us decompose mean transports as

Uh = < Uh >+Uh
∗

with < Uh > the zonal mean average transports and Uh
∗ their zonal

anomaly. Similarly we have mean temperatures :

θ = < θ >+ θ ∗

I Neglecting vertical variations of Uh and θ , we deduce zonally
averaged meridional heat transports by standing meanders :
< V ∗θ ∗ >.

I Meanders advect anomalously cold waters θ ∗ < 0 northward V ∗ > 0,
and reversely anomalously warm waters southward, so that the zonal
mean transport by those meanders is poleward :

< V ∗θ ∗ >< 0

Indeed, waters advected northward come from the south and are
colder, and vice versa for waters advected southward.



Role of eddies a. Detection of 2495 eddies on 28-Aug-1996

b. Temporal standard deviation of sea level c. Relation sea level – 
eddy amplitude

Figure 25 – a) Dynamic sea level on 28-Aug-1996 (shades) and eddy tracking
(contours). b) Temporal standard deviation of sea level (high-pass flitered) and
c) its spatial scatterplot with the average eddy sea level amplitude (Chelton et
al 2011).



Role of eddies

Transient mesoscale eddies :
I Are ubiquitous in the world ocean.
I Are particularly intense in baroclinic mid-latitude oceanic regions

such as western boundary currents and the Antarctic Circumpolar
Current, which indicates their dominant formation through baroclinic
instability.

I Their magnitude is most commonly diagnosed by computing the
temporal standard deviation of dynamic sea level. This is an
indication that instantaneous surface geostrophic velocities are
dominated by those eddies, as we have seen in Chapter 1.



Role of eddies

Impact of eddies on the mean circulation :
I They play a large role at mid-latitude in ocean meridional heat

transports.
I They induce a meridional overturning transport of buoyancy which is

opposed to the Deacon cell, although it is not visible in terms of time
mean volume transports. This effect can be quantified with the
so-called "transformed Eulerian mean" formalism.

I They modify the zonal mean flow. This effect is qualified as the
"eddy rectification" of the mean zonal flow. The thermal wind
relation states that the magnitude of zonal transports is closely
related to meridional gradients of buoyancy, which are reduced by
eddies.



Role of eddies

The "Transformed Eulerian Mean" formalism :
I The principle is to decompose eddy density fluxes (mostly

temperature fluxes) into an isopycnal component that writes as a
transport streamfunction and a diapycnal component that write as a
diffusivity.

I Let us consider the zonally-averaged mean density equation in the
adiabatic ocean interior :

∂ρ

∂ t
+ (v.∇)ρ +∇.v′ρ ′ = 0

where we have decomposed the advection term into the mean and
eddy transports, v = (v ,w) and ∇ = ( ∂

∂y ,
∂

∂z ) denote the
zonally-averaged velocities and gradient. Density is conserved, so
that its time evolution at a given location is only due to its advection
in the meridional plane by mean and eddy velocities.



Role of eddies
I Let us decompose the eddy transport into a component parallel to

isopycnals and another one normal to them :

v′ρ ′ = χ∇
¬

ρ +K∇ρ

with ∇
¬

= ( ∂

∂z ,−
∂

∂y ) the rotated gradient operator (90◦ clockwise to

∇), χ the along-isopycnal eddy transport and K the across-isopycnal
eddy transport given by the formulas :

χ =
v′ρ ′.∇

¬
ρ

(∇ρ)2

K =
v′ρ ′.∇ρ

(∇ρ)2

We have just projected the eddy transport term onto a new
coordinate system following density surfaces.



Role of eddies

I The eddy transport divergence term of the density equation now
writes as :

∇.v′ρ ′ = ∇.(χ∇
¬

ρ) +∇.(K∇ρ)

The second term has the form of the usual eddy diffusivity
introduced for the closure of turbulence, as we have seen in Chapter
2. However, there is an additional term which does not take the form
of a diffusivity.

I Let us develop it :

∇.(χ∇
¬

ρ) =
∂

∂y
(χ

∂ρ

∂z
) +

∂

∂z
(χ(−∂ρ

∂y
))

=
∂ χ

∂y

∂ρ

∂z
− ∂ χ

∂z

∂ρ

∂y
= −∇

¬
χ.∇ρ



Role of eddies

I This shows that χ is the streamfunction of the eddy-induced
transport. Indeed, if we introduce v∗ =− ∂ χ

∂z and w∗ = + ∂ χ

∂y , we find
the following density equation :

∂ρ

∂ t
+ ((v +v∗).∇)ρ +∇.(K∇ρ) = 0

So far we have made no approximation. Our decomposition
illustrates that eddy transports take the form of eddy-induced
velocities plus eddy diffusivities.



Role of eddies
I Now we must close turbulent terms χ and K . We make the so-called

"eddy adiabatic" approximation K = 0, which assumes that eddies
transport tracers along isopycnals. This allows to introduce only one
closure equation (e.g. for v ′ρ ′) and deduce the second (w ′ρ ′) so that
the eddy flux is isopycnal :

v ′ρ ′ = −κ
∗ ∂ρ

∂y

=⇒ w ′ρ ′ = −(
∂ρ

∂y
/

∂ρ

∂z
)v ′ρ ′

= −κ
∗s

∂ρ

∂y

= +κ
∗s2 ∂ρ

∂z

with κ∗ the isopycnal eddy diffusivity and s =−( ∂ρ

∂y /
∂ρ

∂z ) the
isopycnal slope.



Role of eddies

Finally, we obtain a very simplified expression for χ :

χ =
v′ρ ′.∇

¬
ρ

(∇ρ)2

=
v ′ρ ′

∂ρ

∂z

× 1+ s2

1+ s2

= −κ
∗(

∂ρ

∂y
/

∂ρ

∂z
)

= +κ
∗s

After a lot of pain, we have just formulated the streamfunction that
defines the "eddy-induced velocities" introduced in Chapter 2. It is used
as a parametrization of eddies in all low resolution (∼ 1◦) ocean models
because it largely improves the mean flow and water mass distribution.



Role of eddies

a. Residual mean overturning b. Mean flow overturning c. Eddy-induced overturning

Figure 26 – Residual mean, mean and eddy-induced meridional overturning
diagnosed in the Southern Ocean (Farneti et al 2010). The vertical coordinate is
density and can be considered similar to depth.

Because of transient eddies, the wind-driven overturning is weakened,
which transports heat southward and weakens the Antarctic Circumpolar
Current.



Role of eddies

In the Southern Ocean :
I The eddy-induced overturning is opposite to the mean overturning.
I So that the overturning felt by tracers (e.g. temperature), called the

residual circulation, is weakened.
I The eddy-induced overturning advects light (warm) waters poleward

and dense (cold) waters equatorward, which also explains the intense
poleward heat transport by eddies.



Interpretation in terms of the Lorenz energy cycle

The Southern Ocean circulation highlights the importance of both the
mean and eddy dynamics. The oceanic Lorenz Energy Cycle describes
exchanges between those reservoirs of mechanical energy :

I The available potential energy (P) is the gravitational potential
energy with respect to a horizontally homogeneous reference state,
that is the energy available for conversion into kinetic energy.

I We separate both P and kinetic energy (K) into a mean (Pm and
Km) and eddy (Pe and Ke) component, respectively for the time
mean and time-varying contributions.



Interpretation in terms of the Lorenz energy cycle

a. Oceanic Lorenz Energy Cycle b. Atmospheric Lorenz Energy Cycle

Figure 27 – a) Oceanic and b) atmospheric Lorenz Energy Cycles deduced from
high-resolution simulations (von Storch et al 2012). Conversion terms are noted
C, generation G and dissipation D.



Interpretation in terms of the Lorenz energy cycle

I Wind work (G (Km)) is the main source of Km : the mean circulation
in the Southern Ocean is set up by the wind forcing.

I Positive C (Km,Pm) flux : Ekman pumping builds meridional density
gradients.

I Strong G (Pm) : Pm can also be directly created by buoyancy
(mostly heat) fluxes at surface which contribute to meridional
density gradients.

I Positive C (Pm,Pe) and C (Pe,Ke) : once large density gradients are
built, they can be converted by bariclinic instability into mesoscale
eddies (Ke) which are the main kinetic energy reservoir of the ocean.

I Intense D(Ke) : kinetic energy is transferred to lower scales where it
can ultimately dissipate.

I Transfers between Km and Ke are limited, meaning that neither
component drives the other : their is neither intense barotropic
instability (C (Km,Ke)) nor an intense inverse cascade (C (Ke,Km)).



Interpretation in terms of the Lorenz energy cycle
a. Oceanic Lorenz Energy Cycle b. Atmospheric Lorenz Energy Cycle

Figure 28 – a) Oceanic and b) atmospheric Lorenz Energy Cycles deduced from
high-resolution simulations (von Storch et al 2012). Conversion terms are noted
C, generation G and dissipation D.

I Both fluids are strikingly different owing to the different nature of
their forcings.



Interpretation in terms of the Lorenz energy cycle

Differences with the atmospheric Lorenz Energy cycle :
I In the atmosphere, the forcing is diabatic and not mechanical, so

that it increases Pm.
I From that, atmospheric dynamics must extract this energy through

baroclinic conversion to be set into motion.
I Ultimately, it is the transient eddies that drive the mean circulation

through the so-called inverse cascade.
I In this sense, eddies have a greater role in atmosphere than ocean,

and the atmosphere has a much less forced and more internal
dynamical nature than the ocean.



Outline

The Ekman currents and Sverdrup balance

The western intensification of gyres

The Southern Ocean circulation

The Tropical circulation



Along the Equator, the ocean dynamics are fundamentally different
because the Coriolis acceleration cancels out.

I Very fast (Kelvin, Rossby) waves that make of the ocean and
atmosphere a coupled system, contrary to extratropical latitudes.

I Currents are very strong (∼ 1m/s) and unbalanced, with a
wind-driven flow extending to higher depth (∼ 100−200m).

I Hence temporal variability (ENSO, monsoon, seasonal cycle) largely
masks mean patterns.

I Similarities with Extratropics : geostrophic and Ekman balances are
rapidly restored, and winds play a determinant role in the circulation.



Meridional circulation

Strong modulations of Ekman transports :
I From the maximum trade wind jet (around ±10−15◦ of latitude),

trade winds weaken to reach the so-called "doldrums" at the
Inter-Tropical Convergence Zone.

I However, the Coriolis parameter also varies rapidly to cancel at the
Equator.

I These variations generate the Tropical Gyres, the Tropical Cells and
the Subtropical Cells.



Tropical gyres
x10 N/m²⁻⁷

b) Sverdrup transports

c) Observed transports

Sv

a) Wind stress curl

Figure 29 – a) Observed wind stress curl, b) vertically-integrated transports
predicted from Sverdrup theory and c) observed vertically-integrated transports
in the Tropical Pacific (Kessler et al 2003).



Tropical gyres

Interpretation :
I In the ∼ 5−15◦ latitude band, as predicted by Munk, tropical gyres

are generated by the positive Ekman pumping due to the poleward
intensification of trade winds.

I Symmetrically to subtropical gyres, the Ekman pumping induces a
poleward interior Sverdrup transport which is returned by an
equatorward western boundary current.

I The subtropical-tropical gyre separation defines the North Equatorial
Current, whereas the southern edge of the tropical gyre defines the
North Equatorial Countercurrent.



Tropical gyres

Limitations :
I Sverdrup theory predicts much weaker transports than what is

observed.
I The North Equatorial Countercurrent is part of the Equatorial

current system and largely deviates from Sverdrup balance.
I Much less steady features than their subtropical and subpolar

counterparts :
I The Ekman pumping almost cancels in the winter of each

hemisphere, so that the corresponding tropical gyres can even
disappear as is the case in the tropical North Atlantic.

I Trade winds are interrupted by the seasonal to interannual variability
associated with ENSO and the monsoon systems, and hence so are
the tropical gyres.



Tropical cells

a) Meridional overturning (Sv) and 
potential density (kg/m³)

b) Location and volumic flux (mSv) of parcels 
reaching the Equatorial Undercurrent

Figure 30 – a) Meridional overturning streamfunction and potential density
section from a numerical model of the Tropical Indo-Pacific and b) location and
volumic flux of simulated Lagrangian parcels reaching the Pacific Equatorial
Undercurrent (Hazeleger et al 2001, Goodman et al 2005).



Tropical cells
In the Deep Tropics (±5◦ latitude band), the Ekman pumping is not
dominated by the wind stress curl (the trade wind weakening) anymore
but by the beta effect. In the Equatorial beta plane, the Coriolis
parameter is : f = βy ' 2Ω

Ra
y with Ra the Earth’s radius. Hence the

Ekman pumping becomes :

w(−hE ) =
1
ρ0

Curl(
τ

βy
)

=
1
ρ0

[
∂τy/(βy)

∂x
− ∂τx/(βy)

∂y

]
= − 1

ρ0

[
1

βy
Curl(τ )− τx

βy2

]
=

1
ρ0βy

[
τx

y
−Curl(τ )

]
Near the Equator, the first term, that is the beta effect, becomes
dominant in the Ekman pumping.
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Tropical cells

Interpretation :
I Stronger currents are required for the Coriolis acceleration to balance

both wind stress and pressure gradients.
I Consequence for Ekman transports :

I The Ekman pumping becomes negative around 5◦ of latitude.
I At the Equator, Coriolis acceleration cancels out and so do the

Ekman transports, so that there is an intense Ekman pumping.
I Consequence for geostrophic transports :

I A zonal pressure gradient must prevail to permit an interior return
flow and satisfy continuity.

I This zonal pressure gradient is itself built by zonal Equatorial currents
driven by trade winds that push warm waters in the so-called western
"Warm Pools".

We have just described wind-driven meridional cells : the Tropical Cells.



Tropical Instability Waves

Figure 31 – 2000–2014 average meridional heat transport for the atmosphere
and ocean, and per main oceanic basinc (Trenberth and Fasullo 2017).

I The Deep Tropics are the only region where the ocean dominates
over the atmosphere in the meridional heat transport.

I Due to Tropical Cells



Tropical Instability Waves
a. Ocean meridional heat transport

b. Polar front location

c. Polar front meridional 
heat transport

Total

Mean

Eddy

Figure 32 – a) Mean and eddy meridional heat flux.
I Similarity with the Southern Ocean : eddy and mean opposed.
I Due to Tropical Instability Waves.



Tropical Instability Waves

Figure 33 – Sea surface temperature in November 1998 from a nested
high-resolution simulation of the Tropical Pacific (Marchesiello et al 2011).



Tropical Instability Waves

Tropical Instability Waves :
I They are larger than mesoscale eddies (L∼ 1000km) because of the

low Coriolis parameter.
I They are fed by the strong meridional shear of zonal Equatorial

currents (barotropic instability).
I The residual (mean plus eddy-driven) overturning transport is

weakened : poleward heat advection is reduced.



Subtropical cells

a) Meridional overturning (Sv) and 
potential density (kg/m³)

b) Location and volumic flux (mSv) of parcels 
reaching the Equatorial Undercurrent

Figure 34 – a) Meridional overturning streamfunction and potential density
section from a numerical model of the Tropical Indo-Pacific and b) location and
volumic flux of simulated Lagrangian parcels reaching the Pacific Equatorial
Undercurrent (Hazeleger et al 2001, Goodman et al 2005).



Subtropical cells

I In the wide subtropical band (±30◦ of latitude), there is poleward
Ekman transport driven by Easterly winds.

I It corresponds to the upper branch of a planetary overturning cell
that upwells in the Equator and sinks within the subtropical gyre.

I By continuity, a return flow must exist at depth, defining the
Subtropical Cells.

I Because of the northward interior flow within the Tropical Gyres, this
southward flow occurs southwestward within the Subtropical Gyre,
and then through the western boundary current of the Tropical Gyre.



Subtropical cells
a) Meridional overturning (Sv) and 
potential density (kg/m³)

b) Location and volumic flux (mSv) of parcels 
reaching the Equatorial Undercurrent

Figure 35 – a) Meridional overturning streamfunction and potential density
section from a numerical model of the Tropical Indo-Pacific and b) location and
volumic flux of simulated Lagrangian parcels reaching the Pacific Equatorial
Undercurrent (Hazeleger et al 2001, Goodman et al 2005).

Similarly to Subtropical Gyres, Subtropical Cells trap mode waters for
years to decades in the adiabatic interior ocean !



Zonal circulation

I The most intense circulation features of the Deep Tropics are zonal.
I Their exceptional magnitude is related to the cancellation of the

Coriolis acceleration at the Equator.



South Equatorial Currents
Equatorial Rossby number :

Ro = U
fL = U

βL2 ' RaU
2Ωy2

I Submesoscale dynamics :

Ro ' 1 ⇐⇒ y ' 250km

that is at φ ' 2◦ of latitude. Interpretation :
I Ro = ζ/f ' 1 : the effect of rotation is still felt by water masses, but

advective effects become as important.
I Usually very small oceanic scales (∼ 1−10km), but also concerns

large scales along the Equator !
I All terms of the horizontal momentum equations become important !

I Quasi-geostrophic dynamics :

Ro ' 0.1 ⇐⇒ y ' 800km

that is at φ ' 7◦ of latitude, where dynamics becomes similar to
Extratropics again.

I Both dynamical regimes characterize the South Equatorial Currents
which gather westward currents extending from 3◦N to 20◦S .
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South Equatorial Currents
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Figure 36 – Observed meridional section of zonal currents and potential
temperature across the central Tropical Pacific (155◦W , between Tahiti and
Hawaii, Lu et al 1998).



South Equatorial Currents

Equatorial South Equatorial Current (eSEC) :
I Along the Equator, Coriolis acceleration can no longer balance the

westward wind stress caused by Easterlies.
I Hence the flow is accelerated westards until water masses

accumulate in the western Warm Pool and build an eastward
pressure gradient that balances wind stress.



South Equatorial Currents

Figure 37 – Mean dynamic topography (cm) deduced from satellite
(ESA/CNES/CLS).

I Pressure gradient visible at surface from the zonal slope of the
dynamic sea level !



South Equatorial Currents
a) Potential temperature

b) Potential density

c) Zonal currents and isopycnal thickness
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Figure 38 – Observed mean zonal section of a) potential temperature and b)
potential density along the Equatorial Pacific (LT’s lecture).

I The abyssal ocean being mostly at rest, an opposite thermocline
slope exists in the interior ocean (Margules’s relation) !



South Equatorial Currents

Margules’s relation at the Equator :
I With a typical dynamic sea level difference of ∆η '−60cm in the

Equatorial Pacific, we get a thermocline depth difference of

∆h '−200×∆η '+120m.
I Typical in the tropical Pacific of a neutral ENSO anomaly, and

enhanced during La Niña events.



South Equatorial Currents

Margules’s relation at the Equator :
I With a typical dynamic sea level difference of ∆η '−60cm in the

Equatorial Pacific, we get a thermocline depth difference of
∆h '−200×∆η '+120m.

I Typical in the tropical Pacific of a neutral ENSO anomaly, and
enhanced during La Niña events.



South Equatorial Currents

Exercise : zonal sea level slope within the frictional surface layer.

We suppose a surface frictional layer of depth H = 100m where zonal
pressure gradients balance the surface wind stress. We assume a
homogeneous layer of density ρ0 = 1025kg/m3. Deduce the zonal sea
level gradient balancing a trade wind of magnitude u10m =−5m/s. To
what zonally-integrated sea level difference does it correspond in the
Equatorial Pacific of width W = 8,000km ? We assume g ∼ 10m2/s,
ρa ∼ 1kg/m3 and Cd ∼ 2×10−3.



South Equatorial Currents

Solution : the zonal momentum equation writes as :

0 = − 1
ρ0

∂P

∂x
+

∂

∂z
(κzu

∂u

∂z
)

⇐⇒ 0 = −g ∂η

∂x
+

∂

∂z
(κzu

∂u

∂z
)

Integrating over the frictional surface layer yields :

gH
∂η

∂x
=

[
κzu

∂u

∂z

]η

−H

=
τx

ρ0
=−ρaCdu

2
10m

ρ0

=⇒∆η = −WρaCdu
2
10m

ρ0gH
'−40cm

which is of the right order of magnitude.



South Equatorial Currents

θ

U

D
ep
th

D
ep
th

Latitude

Figure 39 – Observed meridional section of zonal currents and potential
temperature across the central Tropical Pacific (155◦W , between Tahiti and
Hawaii, Lu et al 1998).



South Equatorial Currents

On each side of the eSEC, in the Deep Tropics, lie the Northern and
Central South Equatorial Currents (nSEC and cSEC).

I The wind stress still accelerates their westward flow, but the Coriolis
acceleration becomes important so that the meridional pressure
gradient also drives the westward flow.

I Because of the Equatorial upwelling, an intense equatorial sea level
minimum causes a poleward pressure gradient and hence a westward
geostrophic flow.

I Despite these dominant mechanisms, all terms of the zonal
momentum equation matter !



South Equatorial Currents

Finally, outside of the Deep Tropics, the southern South Equatorial
Current (sSEC) :

I Southern Hemisphere counterpart of the North Equatorial Current,
that is the westward return flow of the subtropical gyre.

I Its dynamic is quasi-geostrophic and hence simpler and not
equatorial anymore.



South Equatorial Currents

The very large magnitude of the South Equatorial Currents located in the
Deep Tropics (∼ 1m/s) reveals the weakness of Coriolis acceleration :

I Because surface currents are more aligned to surface winds, the wind
work is largely increased which permits higher levels of kinetic energy,
despite modest winds along the Equator.

I The vertical extent of the wind-driven current is not limited anymore
by Coriolis acceleration, so that it can reach much higher depth
(h ∼ 200m) than Ekman currents (hE ∼ 50m). Indeed, vertical
turbulent momentum fluxes are not balanced anymore by Coriolis
acceleration, so that they must penetrate deeper for other terms to
balance them.



North Equatorial Countercurrent
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Figure 40 – Observed meridional section of zonal currents and potential
temperature across the central Tropical Pacific.



North Equatorial Countercurrent

I The North Equatorial Countercurrent’s very large magnitude (up to
∼ 1m/s) cannot be simply explained by gyre dynamics.

I It is above all the geostrophic response to the intense Ekman suction
at the northern edge of the northern Tropical Cell.

I The meridional pressure gradient is opposite to that along the
Equator driving the nSEC and cSEC, so that geostrophic currents are
eastward.

I Similarly to Ekman currents within the Tropical Cells, due to the
weakness of Coriolis, intense geostrophic currents are required for the
geostrophic balance to be reached.



Equatorial Undercurrent

a) Potential temperature

b) Potential density

c) Zonal currents and isopycnal thickness
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Figure 41 – c) Near real-time zonal current and isopycnal thickness in
September 2018 from MYCOM analysis (US Navy).



Equatorial Undercurrent

The Equatorial Undercurrent is probably the most striking illustration of
the unique nature of Equatorial dynamics :

I Depth-intensified current reaching a maximum of ∼ 1m/s around
100−200m depth with no surface signature !

I Strongest interior current and largest vertical shears of the World
ocean.

I Opposite to local wind forcing.



Equatorial Undercurrent
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Figure 42 – Zonal momentum balance along the Equatorial Atlantic from a
numerical model (Wacongne 1989).

1 Surface eSEC under the effect of wind stress.
2 Western Equatorial Undercurrent accelerated by the pressure gradient
3 Eastern Equatorial Undercurrent slowed down by meridional export

of momentum
4 Transitional areas involving all terms except vertical friction.



Equatorial Undercurrent
Western acceleration :

I The zonal pressure gradient generated by surface South Equatorial
currents not equilibrated below the frictional layer. Hence intense
zonal acceleration of the flow.

I Assuming the zonal pressure gradient is purely barotropic (driven by
sea level), the zonal momentum equation is :

du

dt
=−g ∂η

∂x
'+10× 0.60

8×106 ' 10−6m/s2

with du
dt ' u ∂u

∂y for a purely zonal steady state.
I Integrating from the western boundary where there is no normal

flow,

u(t) = 10−6t; x(t) = 0.5×10−6t2

=⇒ u = 1.5m/s ⇐⇒ t ' 15days; x ' 1,000km

This gives a lower bound for the western boundary width where the
Equatorial undercurrent is accelerated.
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Equatorial Undercurrent

a) Potential temperature

b) Potential density

c) Zonal currents and isopycnal thickness
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Figure 43 – c) Near real-time zonal current and isopycnal thickness in
September 2018 from MYCOM analysis (US Navy).



Equatorial Undercurrent

Eastern deceleration :
I The zonal pressure gradients weaken.
I Meridional eddy momentum fluxes due to Tropical Instability Waves

export zonal momentum.
I Due to the intense equatorial upwelling, the Equatorial Undercurrent

is slanted : in the East, it can ultimately feel surface wind stress that
slows it down.

I In this case, the zonal momentum equation writes as :

du

dt
=−g ∂η

∂x
+

∂

∂z
(κzu

∂u

∂z
) +

∂

∂y
(κhu

∂u

∂y
)

The second and third terms to the right hand side, due to wind
stress and Tropical Instability Waves, are negative.
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Equatorial Undercurrent

Exercise : what would happen to the tropical Pacific circulation if the
Equatorial trades were suddenly reversed into Westerlies ?



Equatorial Undercurrent

Response : El Niño. Namely :

I Reversal of the eSEC and of the Tropical Gyres, hence also of the
nSEC, cSEC

I Cancellation of the Tropical Gyre circulation and of the North
Equatorial Countercurrent.

I Consequence for temperature distributions : weakening to
cancellation of the zonal sea level, temperature and hence pressure
gradients, and as a consequence also weakening of the Equatorial
Undercurrent.

I This response is not instantaneous and involves mostly Equatorial
Kelvin and Rossby waves of typical propagation times ∼ 2 months
and ∼ 6 months across the Tropical Pacific. Note that mid-latitude
Rossby waves take typically decades to cross oceanic basins : this is
why the Equatorial ocean variability is coupled to the atmosphere,
contrary to mid-latitudes.
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