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A first taste...
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) + Ṡ

ρ = ρ(θ ,S ,P0(z))

All the physics of an ocean circulation model is here !
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Conservation of mass : continuity

In the following : control volume of zonal, meridional and vertical sizes
δx , δy and δz and density ρ on a fixed Cartesian coordinate system
(i, j,k) attached to the ground.



Conservation of mass : continuity

Mass conservation :

d(ρδxδyδz)

dt
= 0

= δxδyδz
dρ

dt
+ ρ(δyδz

dδx

dt
+ δxδz

dδy

dt
+ δxδy

dδz

dt
)

= δxδyδz
dρ

dt
+ ρ(δyδzδu+ δxδzδv + δxδyδw)

Hence dividing by δxδyδz :

dρ

dt
+ ρ(

∂u

∂x
+

∂v

∂y
+

∂w

∂z
) = 0

⇐⇒ dρ

dt
+ ρ∇.v = 0

with ∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂z ) the space derivative operator.
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Conservation of mass : continuity

In the ocean, Boussinesq approximation : relative density variations are
small :
ρ(x ,y ,z , t) = ρ0 + ρ ′(x ,y ,z , t) and ρ ′ << ρ0

The continuity equation becomes :

dρ ′

dt + (ρ0 + ρ ′)∇.v ' ρ0∇.v = 0

⇐⇒ ∇.v = 0

I To a very good approximation, oceanic currents are non-divergent.
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Conservation of momentum

Newton’s 2nd law : the Lagrangian (material) evolution of momentum is
determined by the sum of external (gravity) and body (pressure and
friction) forces.



Conservation of momentum

The acceleration in the Eulerian (fixed) framework ∂u
∂ t is far easier to

observe and model than the Lagrangian one du
dt .

Relation between both :

δu =
∂u
∂ t

δ t +
∂u
∂x

δx +
∂u
∂y

δy +
∂u
∂z

δz

⇐⇒ du
dt

=
∂u
∂ t

dt

dt
+

∂u
∂x

dx

dt
+

∂u
∂y

dy

dt
+

∂u
∂z

dz

dt

=
∂u
∂ t

+
∂u
∂x

u+
∂u
∂y

v +
∂u
∂z

w

=
∂u
∂ t

+ (u.∇)u

(u.∇)u is the (nonlinear) advection term.



Conservation of momentum

The acceleration in the Eulerian (fixed) framework ∂u
∂ t is far easier to

observe and model than the Lagrangian one du
dt .

Relation between both :

δu =
∂u
∂ t

δ t +
∂u
∂x

δx +
∂u
∂y

δy +
∂u
∂z

δz

⇐⇒ du
dt

=
∂u
∂ t

dt

dt
+

∂u
∂x

dx

dt
+

∂u
∂y

dy

dt
+

∂u
∂z

dz

dt

=
∂u
∂ t

+
∂u
∂x

u+
∂u
∂y

v +
∂u
∂z

w

=
∂u
∂ t

+ (u.∇)u

(u.∇)u is the (nonlinear) advection term.



Conservation of momentum
Advection of zonal momentum in all faces of the control volume :

k

i

j

P(x)/ρ
0
 δyδzP(x-δx)/ρ

0
 δyδz

u(x-δx) δyδz u(x-δx)
- u(x) δyδz u(x)

w(z-δz) δxδy u(z-δz)

- w(z) δxδy u(z)

v(y-δy) δxδz u(y-δy)

- v(y) δxδz u(y)

-f v δxδyδz

−ν
∂u
∂ x

(x−δ x )δ y δ z
ν

∂u
∂ x

(x)δ y δ z

−ν
∂u
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( z−δ z)δ x δ y

ν
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−ν
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( y−δ y)δ x δ z
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Conservation of zonal momentum over a control volume

δz
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Figure 1 – Conservation of zonal momentum over a control volume : advection
(black), viscous forces (red), pressure forces (blue) and Coriolis acceleration
(purple).
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Conservation of momentum
Zonal pressure force on the western and eastern faces of the control
volume :
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Figure 2 – Conservation of zonal momentum over a control volume : advection
(black), viscous forces (red), pressure forces (blue) and Coriolis acceleration
(purple).
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Figure 2 – Conservation of zonal momentum over a control volume : advection
(black), viscous forces (red), pressure forces (blue) and Coriolis acceleration
(purple).



Conservation of momentum

Zonal pressure force on the western and eastern faces of the control
volume :

FPx = (P(x−δx)−P(x))δyδz

hence volumic zonal pressure force :

FPx
δxδyδz

=−∂P

∂x

Generalizing to other spatial dimensions :

FP

δxδyδz
=−∇P



Conservation of momentum

Friction Fτ :
I Newton’s law of viscosity for a Boussinesq Newtonian fluid :

τij = +νρ(
∂uj
∂xi

+
∂ui
∂xj

)

with τij the viscous stress exerted over the coordinate i on velocity
component j , xi ,xj = (x ,y ,z), ui ,uj = (u,v ,w) and
ν = 8.9×10−7m2/s the water kinematic viscosity.

I The second term vanishes in a Boussinesq fluid : hence friction
behaves just like molecular or heat diffusion !



Conservation of momentum
Zonal friction force on all faces of the control volume :
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Figure 3 – Conservation of zonal momentum over a control volume : advection
(black), viscous forces (red), pressure forces (blue) and Coriolis acceleration
(purple).
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Conservation of momentum
Zonal friction force on all faces of the control volume :

Fτx = (−τxx(x−δx) + τxx(x))δyδz + (−τyx(y −δy) + τyx(y))δxδz

+ (−τzx(z−δz) + τzx(z))δxδy

= −νρ

[
∂

∂x
(x−δx)δyδz +

∂

∂y
(y −δy)δxδz +

∂

∂z
(z−δz)δxδy

− ∂

∂x
(x)δyδz +

∂

∂y
(y)δxδz +

∂

∂z
(z)δxδy

]
u

= +νρ(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 )uδxδyδz

= +νρ∆uδxδyδz

with ∆ = ∇2 the Laplacian operator. Hence on the volume control over
the three dimensions, the volumic friction force is :

Fτ

δxδyδz
= +νρ∆u



Conservation of momentum

Adding the gravity force, Newton’s 2nd law writes as :

ρδxδyδz(
∂u
∂ t

+ (u.∇)u) = δxδyδz(−∇P + νρ∆u−ρgk)

⇐⇒ ∂u
∂ t

+ (u.∇)u = − 1
ρ
∇P + ν∆u−gk

with g the gravity acceleration and k the vertical unit vector.



Conservation of momentum

Adding the gravity force, Newton’s 2nd law writes as :

ρδxδyδz(
∂u
∂ t

+ (u.∇)u) = δxδyδz(−∇P + νρ∆u−ρgk)

⇐⇒ ∂u
∂ t

+ (u.∇)u = − 1
ρ
∇P + ν∆u−gk

with g the gravity acceleration and k the vertical unit vector.



Conservation of momentum

Hydrostatic assumption for the vertical momentum equation :

∂P

∂z
=−ρg



Conservation of momentum
Second Boussinesq approximation for the horizontal momentum
equations : P = P0 +P ′ with P ′ << P0 as a consequence of ρ ′ << ρ0.

Volumic momentum equations with respect to a reference state at rest
with ∂P0

∂z =−ρ0g :

(ρ0 + ρ
′)(

∂u′h
∂ t

+ (u′.∇)u′h) = −∇P ′+ ν(ρ0 + ρ
′)∆u′h−ρ

′gk

=⇒ ρ0(
∂u′h
∂ t

+ (u′.∇)u′h) = −∇P ′+ νρ0∆u′h−ρ
′gk

=⇒
∂u′h
∂ t

+ (u′.∇)u′h = − 1
ρ0

∇P ′+ ν∆u′h−
ρ ′

ρ0
gk

b =− ρ ′

ρ0
g is the buoyancy acceleration. It is the only means by which

gravity impacts the dynamics.
The total momentum equation (reference plus perturbation) becomes :

=⇒ ∂uh

∂ t
+ (u.∇)uh =− 1

ρ0
∇P + ν∆uh−

ρ ′

ρ0
gk
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Conservation of momentum

Complications arising from the Earth’s rotation and spherical shape :

I Earth’s rotation : the local coordinate accelerates with respect to a
global non-rotating coordinate system. The Coriolis and centrifugal
accelerations arise.

I Spherical shape of the Earth’s surface : the coordinate system
rotates when parcels move. The metric terms arise.

Metric terms are not considered in the following : Cartesian coordinates.



Conservation of momentum

Material evolution of a parcel location r in the absolute frame related to
the relative local coordinates :

(
dr
dt

)A = (
dr
dt

)R +Ω× r

⇐⇒ uA = uR +Ω× r

with Ω the Earth’s angular velocity.
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with Ω the Earth’s angular velocity.



Conservation of momentum
A second derivation yields the correspondence of accelerations :

(
duR

dt
)A = (

duR

dt
)R +Ω×uR

and with :

(
duR

dt
)A = (

duA

dt
)A−

d

dt
(Ω× r)A

= (
duA

dt
)A−Ω× (

dr
dt

)A

= (
duA

dt
)A−Ω× (uR +Ω× r)

we have :

(
duR

dt
)A = (

duA

dt
)R +2Ω×uR +Ω×Ω× r

Extra term 1 is Coriolis, extra term 2 is centrifugal acceleration.
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Conservation of momentum

I Re-writing of the Coriolis acceleration : 2Ω×uR ' (−fuR ,+fvR ,0)
with f = 2Ωsin(φ) (with φ the latitude) the Coriolis parameter. We
have neglected the horizontal Coriolis acceleration (with w << u,v
and the hydrostatic assumption).

I The centrifugal acceleration is mostly vertical and compensated for
by the Earth’s deformation at low latitudes. We hence include it in
an effective gravity force :

g∗ = g +Ω×Ω× r'−g∗k
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Conservation of momentum
Hence only horizontal Coriolis acceleration enters the momentum
equations :
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Figure 4 – Conservation of zonal momentum over a control volume : advection
(black), viscous forces (red), pressure forces (blue) and Coriolis acceleration
(purple).



Conservation of momentum

Final momentum equations under the hypotheses of Boussinesq,
hydrostatism, tangent plane and the neglect of small terms related to the
Earth’s rotation :

∂uh

∂ t
+ (u.∇)uh + f k×uh =− 1

ρ0
∇P + ν∆uh−g∗k



Conservation of heat
Conservation of heat (first law of thermodynamics) over the control
volume :
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k
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j

u(x-δx) δyδz θ(x-δx)
- u(x) δyδz θ(x)
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−νT
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∂ x
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νT
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νT
∂θ
∂ y

( y)δ xδ z

Conservation of heat over a control volume

δz

δy

1
ρ0 cw

θ̇δ x δ yδ z

Figure 5 – Conservation of heat over a control volume : advection (black),
diffusion (red), and source/sink (purple).
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Conservation of heat

Conservation of temperature :

∂θ

∂ t
+ (u.∇)θ = νT∆θ +

1
ρ0cw

Θ̇

with νT the thermal diffusivity of water, cw the water heat capacity, Θ̇
(in W /m3) sources and sinks of heat and θ the seawater potential
temperature.

I Potential temperature : equivalent temperature if parcel uplifted
adiabatically to surface. Limited compressibility of sea water, hence
limited pressure correction.

I Θ̇ represents air-sea heat exchanges (and ice formation/fusion in the
presence of sea ice).



Equation of state

I Unlike the atmosphere, no analytical equation relating density ρ to
the other thermodynamic variables.

I Oceanographers use an empirical 78-member polynomial function of
salinity, potential temperature and pressure to deduce seawater
density.



Equation of state
I Density not linear in θ , S and P : in particular the thermal expansion

varies between ∼−0.05kg/m3/◦C for θ = 0◦C and
∼−0.35kg/m3/◦C for θ = 30◦C (at S = 35 %� and P = Pa).

Figure 6 – (θ ,S) diagram of a profile at 9◦S in the Atlantic (depth in hm, main
water masses in red, BM’s lecture).



Equation of state

A reasonable formula is given by the inclusion of two second-order terms
accounting for the main nonlinearities of density : cabbeling and
thermobaricity.

I Cabbeling is the systematic densification of seawater by mixing.
I Thermobaricity is the small dependency of thermal expansion on

pressure.
The equation writes for the specific volume v = 1

ρ
:

v = v0

[
1+αθ (1+γ

∗P)(θ−θ0)+α
∗
θ (θ−θ0)2−βS(S−S0)−βP(P−P0)

]
with (v0,θ0,S0,P0) a reference state, β = 1

ρ

∂ρ

∂S the haline contraction

coefficient, βP = 1
ρ

∂ρ

∂P the compressibility coefficient, α∗
θ

=− 1
ρ

∂2ρ

∂θ2 the

second thermal expansion (or cabbeling) coefficient and γ∗ = ∂αθ

∂P the
thermobaric parameter.



Equation of state

The nonlinearity of seawater with respect to θ and S has important
consequences :

I Although density is conserved as θ and S are, its conservation
equation is complicated by the involvement of nonlinear terms, so
that it is usually not explicitely formulated.

I The ocean is more expanded from surface warming in the Tropics
than contracted from surface cooling in the high latitudes, although
the net heat flux is balanced. This average surface expansion of the
global ocean, which would be equivalent to a heat imbalance of
Q0 ∼+5W /m2, must be equilibrated otherwise the ocean would be
ever expanding. It is indeed balanced by cabbeling which contracts
the global ocean by mixing.



Equation of state

For most oceanic applications, thermobaricity can be ignored, so that a
potential density referenced at surface is the most commonly used density
variable :

σ0 = ρ(S ,θ ,P = Pa)−1000



Conservation of salt
The equation of state of seawater involves salinity, so that an equation for
salinity must be formulated to close the system. Very similarly to the
conservation of heat :

∂S

∂ t
+ (u.∇)S = νS∆S + Ṡ

with νS ∼ νT/100 the salt diffusivity of sea water, Ṡ (in %�/s) sources
and sinks of salt and S in %� or g/kg the concentration of dissolved salts.

I Ṡ represents air-sea water exchanges, river runoff and sea ice
formation/fusion. Indeed, the salinity of sea ice is S ∼ 5%� so that
its formation is a source of salt (brine rejection) for sea water.

I Salt diffusivity is by far lower than heat diffusivity, which can cause
convective instabilities between water masses of different (θ ,S)
properties named salt fingering and convective layering. They have a
relatively minor role for mixing and ocean circulation.



The Boussinesq equations
We have just derived a set of 7 equations with 8 unknowns :

∂u

∂ t
+u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
− fv = − 1

ρ0

∂P

∂x
+ ν(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 )u

∂v

∂ t
+u

∂v

∂x
+ v

∂v

∂y
v +w

∂v

∂z
+ fu = − 1

ρ0

∂P

∂y
+ ν(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 )v

∂P

∂z
=−ρg∗ =⇒ P(z) ' ρ0g

∗
η +g∗

∫ 0

z
ρdz ′

∂w

∂z
=−∂u

∂x
− ∂v

∂y
=⇒ w(z) = −

∫ z

−H
(
∂u

∂x
+

∂v

∂y
)dz ′

∂θ

∂ t
+u

∂θ

∂x
+ v

∂θ

∂y
+w

∂θ

∂z
= νT (

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 )θ +
1

ρ0cw
Θ̇

∂S

∂ t
+u

∂S

∂x
+ v

∂S

∂y
+w

∂S

∂z
= νS(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 )S + Ṡ

ρ = ρ(θ ,S ,P0(z))

with H > 0 and η the ocean bottom depth and surface height.



The Boussinesq equations
Dynamic sea level has appeared as a new unknown in the vertical
integration of the hydrostatic relation, hence a specific equation must be
derived. The sea level obeys to

the vertically-integrated continuity
equation which also requires a surface and bottom kinematic boundary
condition.

I Surface kinematic boundary condition :

d

dt
(η− z)η = P +R−E =⇒ ∂η

∂ t
=−uh.∇hη +w(η) +P +R−E

I Bottom kinematic boundary condition :

d

dt
(z +H)−H = 0 =⇒ w(−H) =

d

dt
(−H) =−uh.∇hH

I Vertically-integrated continuity :∫
η

−H

∂w

∂z
dz =w(η)−w(−H) =

∂η

∂ t
+uh(η).∇hη−uh(−H).∇h(−H)
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The Boussinesq equations
where we have used Leibnitz’s integration formula :∫

η

−H
−∇h.uhdz =−∇h.

∫
η

−H
uhdz +uh(η).∇hη−uh(−H).∇h(−H)

Finally :

∂η

∂ t
=−∇h.

∫
η

−H
uhdz +P +R−E

I Hence the dynamic sea level is set by surface water exchanges and by
vertically-integrated horizontal convergence. This is the 8th and last
equation of the Boussinesq equation system.

I The Boussinesq approximations have permitted to filter out sound
waves whose very large velocities cs ' 1500m/s would have been a
major issue for the numerical resolution of oceanic circulation.
However, it still includes one type of fast waves that will require
specific numerical treatments : external gravity waves with
cg =

√
gH ∼ 200m/s.



The Reynolds-Averaged Boussinesq equations

Principle :
I Ocean modelling does not resolve all the scales of motions, from the

global scale to the millimetric scale of diffusion : Re = UL
ν
∼ 1011,

hence 104 moles of grid points would be needed !
I Hence a formal separation is needed to identify the influence of

small-scale unresolved motion on the large-scale resolved motion.
I A Reynolds decomposition separates all variables into a mean and a

perturbation, e.g. u = u+u′, with the mean being an ensemble
average.

I Strong hypothesis of numerical modelling : ergodic hypothesis which
assimilates ensemble to spatio-temporal means, so that u is the
large-scale (resolved) variable and u′ is the small-scale (unresolved
and to be parametrized) variable.



The Reynolds-Averaged Boussinesq equations

Under Reynolds’s hypotheses (linearity, commutativity and
indempotency), all non-linear terms of the Boussinesq equations are
modified, the linear ones remaining unchanged.

I The time derivative is linear :

∂u

∂ t
=

∂ (u+u′)

∂ t
=

∂u

∂ t
+

∂u′

∂ t
=

∂u

∂ t
+

∂u′

∂ t
=

∂u

∂ t

I Meridional advection is nonlinear (second-order) :

v
∂u

∂y
= (v + v ′)

∂ (u+u′)

∂y
= v

∂u

∂y
+ v

∂u′

∂y
+ v ′

∂u

∂y
+ v ′

∂u′

∂y

= v
∂u

∂y
+ v

∂u′

∂y
+ v ′

∂u

∂y
+ v ′

∂u′

∂y
= v

∂u

∂y
+ v ′

∂u′

∂y
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The Reynolds-Averaged Boussinesq equations

Similar result for zonal and vertical advection, so that with continuity :

(u.∇)u = (u.∇)u+ (u′.∇)u′ = (u.∇)u+∇.(u′u′)

The second term is a turbulent (or eddy) transport contribution in the
equation for the Reynolds-averaged zonal momentum u. The covariance
of zonal velocity with each component of velocity at the turbulent (hence
unresolved) scale impacts the mean (resolved) momentum equation.
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The Reynolds-Averaged Boussinesq equations

Similarly for meridional velocity and for tracers θ :

(u.∇)v = (u.∇)v +∇.(u′v ′)
(u.∇)θ = (u.∇)θ +∇.(u′θ ′)
(u.∇)S = (u.∇)S +∇.(u′S ′)

12 additional transport terms appear in the conservation of horizontal
momentum, heat and salt. Hence 12 new equations are needed to close
the Boussinesq system.
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The Reynolds-Averaged Boussinesq equations

δx

k

i

j

−w ' ( z)θ ' ( z)δ x δ y≃+κzT
∂θ̄
∂ z

(z )δ xδ y

Advection of heat over a control volume

δz

δy

w ' ( z−δ z)θ ' ( z−δ z)δ x δ y≃−κzT
∂θ̄
∂ z

(z−δ z )δ xδ y

−w̄ (z )θ̄ (z)δ xδ y

w̄ ( z−δ z)θ̄(z−δ z )δ xδ y

−u ' (x)θ ' (x)δ y δ z≃+κhT
∂ θ̄
∂ x

(x )δ yδ zu ' (x−δ x)θ ' (x−δ x)δ y δ z≃−κhT
∂θ̄
∂ x

(x−δ x)δ y δ z

ū(x−δ x)θ̄(x−δ x)δ y δ z
−ū(x)θ̄(x)δ y δ z

−v̄ ( y )θ̄( y )δ xδ z

v̄ ( y−δ y )θ̄( y−δ y)δ xδ z

−v ' ( y)θ ' ( y)δ x δ z≃+κhT
∂ θ̄
∂ y

( y)δ x δ z

v ' ( y−δ y )θ ' ( y−δ y )δ xδ z≃−κhT
∂ θ̄
∂ y

( y−δ y )δ x δ z

Figure 7 – Heat advection over the control volume : mean (resolved, black) and
turbulent (unresolved, red), the latter being parametrized as a so-called
"turbulent diffusion".



The Reynolds-Averaged Boussinesq equations
Closure hypothesis : introduction of turbulent diffusivities :

I We assume just like molecular diffusion the flux-gradient relation so
that each turbulent flux u′X ′ (with X either u, v, θ or S) is
proportional to the gradient of the Reynolds-averaged (resolved)
quantity ∇X .

I More specifically, we separate vertical and horizontal eddy fluxes, the
former being damped by gravity, and we pose :

uh
′X ′ =−κhX∇hX , w ′X ′ =−κzX

∂X

∂z

with κhX and κzX the horizontal and vertical eddy diffusivities for the
variable X .

I Those diffusivities are several orders of magnitude larger than the
molecular diffusivities in the momentum, temperature and salinity
equations.
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The Reynolds-Averaged Boussinesq equations

Finally :

∂uh

∂ t
+ (u.∇)uh + f k×uh = − 1

ρ0
∇hP +∇h.(κhu∇h)uh +

∂

∂z
(κzu

∂uh

∂z
)

P(z) = ρ0gη +g
∫ 0

z
ρdz ′

w(z) = −
∫ z

−H
∇h.uhdz

′

∂η

∂ t
= −∇h.

∫
η

−H
uhdz +P +R−E

∂θ

∂ t
+ (u.∇)θ = ∇h.(κhT∇h)θ +

∂

∂z
(κzT

∂θ

∂z
) +

1
ρcw

Θ̇

∂S

∂ t
+ (u.∇)S = ∇h.(κhS∇h)S +

∂

∂z
(κzS

∂S

∂z
) + Ṡ

ρ = ρ(θ ,S ,P0(z))



The Reynolds-Averaged Boussinesq equations

The Reynolds average sign above all variables of the equation system
reminds us that it is far from describing the "truth" of ocean circulation.
We assumed that :

I Turbulence, which is an advective process, can be modelled as a
diffusive process. In particular, we assume that turbulent fluxes are a
function of the local large-scale variables (locality), that they are
proportional to their gradients (flux-gradient relation), that they only
flux the properties down this gradient (downgradient fluxes).

I A deterministic relation exists between turbulent fluxes and the
averaged quantities, although turbulent motion is chaotic and hence
largely random by nature.

I BUT turbulent diffusivities are generally not constant and can have a
complex mathematical formulation, in order to mimic the wealth of
unresolved turbulent processes (e.g. convection, shear instabilities,
wave breaking, etc.)



Dimensional analysis

The full equations of motion are in a Cartesian coordinates frame :

Du

Dt
− uv tan(φ)

a
+

uw

a
= − 1

ρ

∂p

∂x
+2Ωv sin(φ)−2Ωw cos(φ) + ν∆u

Dv

Dt
− u2 tan(φ)

a
+

vw

a
= − 1

ρ

∂p

∂y
−2Ωu sin(φ) + ν∆v

Dw

Dt
− u2 + v2

a
= − 1

ρ

∂p

∂z
+2Ωu cos(φ)−g∗+ ν∆w

The additional terms on the left-hand side correspond to the metric
terms, and the additional terms involving Ω in the right-hand side are the
horizontal Coriolis acceleration.



Dimensional analysis

We are interested in large-scale motions of typical scales :

I L∼ 1000km
I H ∼ 1000m
I U ∼ 0.1m/s

I We deduce from the continuity equation the typical vertical velocity
scale : W ∼ H

LU = 0.1mm/s

I The characteristic timescale of those motions is hence :
T ∼ L

U = 107s ∼ 1 year
I At mid-latitude f0 = 2Ωsin(φ)' 2Ωcos(φ)' 10−4s−1

I The water kinematic viscosity scales as ν ∼ 10−3m2/s
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Dimensional analysis

Zonal Du
Dt −uv tan(φ)

a + uw
a = − 1

ρ0

∂p
∂x + ρ ′

ρ2
0

∂p
∂x +2Ωv sin(φ) −2Ωw cos(φ) +ν∆u

Meridional Dv
Dt −u2 tan(φ)

a + vw
a = − 1

ρ0

∂p
∂y + ρ ′

ρ2
0

∂p
∂y −2Ωu sin(φ) +ν∆v

OoM U2/L U2/a UW /a δPL/(ρ0L) (δPLρ ′)/(ρ2
0L) f0U f0W νU/H2

Value 10−8 10−9 10−12 ? = 10−5 ?/1000 = 10−8 10−5 10−8 10−10

Table 1 – Orders of magnitude (OoM) for large-scale horizontal motion.

Dominating balance :

geostrophy. The next order terms :
I The momentum trend and advection ; however turbulent advection

can be strong enough to become a leading-order term in the surface
layer (Ekman or convective layer) when κzuU/H2→ 10−5 ;

I The non-Boussinesq contribution to the horizontal pressure gradient ;
I The horizontal Coriolis acceleration ;
I The main metric terms ;
I The vertical molecular viscosity ;
I The secondary metric terms ;
I The horizontal molecular viscosity, despite being the ultimate kinetic

energy sink !
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layer (Ekman or convective layer) when κzuU/H2→ 10−5 ;

I The non-Boussinesq contribution to the horizontal pressure gradient ;
I The horizontal Coriolis acceleration ;
I The main metric terms ;
I The vertical molecular viscosity ;
I The secondary metric terms ;
I The horizontal molecular viscosity, despite being the ultimate kinetic

energy sink !



Dimensional analysis
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Dimensional analysis

Vertical Dw
Dt −u2+v2

a = − 1
ρ0

∂p
∂z + ρ ′

ρ2
0

∂p
∂z +2Ωu cos(φ) −g∗ ρ0

ρ
−g∗ ρ ′

ρ
+ν∆w

OoM UW /L U2/a δPH/(ρ0H) δPHρ ′/(ρ2
0H) f0U g∗ g∗ρ ′/rho0 νW /H2

Value 10−11 10−9 ? = 10 ?/1000 = 10−2 10−5 10 10−2 10−13

Table 2 – Orders of magnitude (OoM) for large-scale vertical motion.

Dominating balance :

hydrostatism. Even larger domain of validity than
geostrophy, which is why most ocean models are hydrostatic.

Vertical acceleration becomes significant in the perturbation analysis when
W ∼ U ∼ 0.1m/s and L∼ 1m, that is for fully developed 3-dimensional
turbulence. This is the case of convection which will thus have to be
parametrized in the eddy diffusivity coefficients κzu, κzT and κzS .
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Application : transport reconstruction from thermal wind
Using the dynamical method with a level of no motion at 4000m and a
linear equation of state ρ = ρ0(−αθ θ + βSS), estimate the mean surface
velocity and the integral transport across the Drake passage. αθ ' 10−4

◦C−1, βS ' 10−3%�−1, f0 '−1×10−4s−1.

θ (°C) S (‰)θ (°C)θ (°C)θ (°C)

D
ep

th
 (

m
)

Hydrographic section across the Drake Passage

Figure 8 – Hydrographic section across Drake Passage (H. Johnson’s lecture).



Application : transport reconstruction from thermal wind

Solution : the dynamical method consists in retrieving geostrophic
velocities from the vertical integration of the thermal wind relation, which
uses both geostrophy and hydrostatism, from a reference level. The
thermal wind relation writes as :

∂ug
∂z

=
∂

∂z
(− 1

f0ρ0

∂P

∂y
)

= − 1
f0ρ0

∂

∂y
(
∂P

∂z
)

= − 1
f0ρ0

∂

∂y
(−ρg)

= +
g

f0ρ0

∂ρ

∂y

= +
g

f0
(−αθ

∂θ

∂y
+ βS

∂S

∂y
)



Application : transport reconstruction from thermal wind
We integrate it per layer of ∆z ∼ 1000m height and over ∆y ' 500km :

∆θ0−1000m ' +5◦C ,∆S0−1000m '−0.2
∆θ1000−2000m ' +1.5◦C ,∆S1000−2000m '−0.2
∆θ2000−3000m ' +1.5◦C ,∆S2000−3000m '−0.02
∆θ3000−4000m ' +1◦C ,∆S3000−4000m '+0.03

Hence we have :

∆u3000−4000m = u3000m =
g∆z

f0∆y
(−αθ ∆θ3000−4000m + βS∆S3000−4000m)

' −500× (−1×10−4 +0.03×10−3)'+3.5cm/s

u2000m = u3000m + ∆u2000−3000m

' 0.035−500× (−1.5×10−4−0.02×10−3)' 12cm/s

u1000m = u2000m + ∆u1000−2000m

' 0.12−500× (−1.5×10−4−0.2×10−3)' 29.5cm/s

u0m = u1000m + ∆u0−1000m

' 0.295−500× (−5×10−4−0.2×10−3)' 64.5cm/s



Application : transport reconstruction from thermal wind

We can deduce the integral transport across Drake passage by integrating
meridionally and vertically those velocities :

TDrake ' ∆y∆z(u4000m/2+u3000m +u2000m +u1000m +u0m/2)

' 5×108(0.035+0.12+0.295+0.645/2)' 386Sv

This is the right order of magnitude for transports across the Drake
Passage, although due to the numerical approximations it is overestimated
by a factor ∼ 2−3. Those surface velocities and transports are among the
most intense geostrophic currents found in the global ocean.



Outline

The Equations of Ocean Circulation

Ocean modelling



An ocean model resolves numerically the equations of motion with the
following specificities :

I The coordinate system is not Cartesian but curvilinear (spherical)
with horizontal axes that are not simply longitude and latitude.

I They are resolved over a finite number of grid cells and time steps,
and hence must be discretized in time and space.

I A wide variety of lateral and vertical physical parametrizations can
be introduced which all aim at modelling the unresolved turbulent
motions.

I All boundary conditions (surface, lateral and bottom) must be
specified for the equations to be solved in a given domain.
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Discretization

Time discretization :
I The equations for u, v, η , θ and S are prognostic, which allows to

step forward in time. They must be discretized in time.
I Example of time stepping scheme : the leapfrog scheme

X (t + δ t) = X (t−δ t) +2δ tRHS(t)

with X any ocean prognostic variable, δ t the timestep and RHS(t)
the right hand side of X evolution equation.

I Typical timesteps : ∼ 1h for ocean climate models to ∼ 10min for
regional ocean models and ∼ 1min for coastal models.

I Truncation accuracy : behaviour of a scheme’s error as a function of
timestep δ t (or grid spacing δx for space discretization). Example :
the leapfrog has 2nd order accuracy (error of O(δ t3)).



Discretization
Space discretization : model grids

I Curvilinear grids : 3D arrays of points with orthogonal coordinates
(i,j,k), one vertical and two horizontal.

I Horizontal directions do not strictly follow longitude and latitude,
which allows to position the poles over continents.

I Consequences : modification of horizontal derivative operators,
variable cell volume.

Figure 9 – NEMO model’s tripolar curvilinear grid



Discretization

Horizontal discretization
I Horizontal resolution : δx ∼ 100km for global climate applications to
∼ 10km for ocean-only regional studies and ∼ 1km for coastal
applications.

I Large variety of horizontal discretization scheme : either globally
conserving for climate, or conserving local variance for small scales.



Discretization
Vertical discretization

I 3 main paradigms : truely vertical (z), terrain-following (σ) or
isopycnal (ρ).

I Advantage of z-coordinate : natural to write horizontal momentum
equations !

Figure 10 – Schematic of the three main ocean vertical coordinates in their
natural domains of application : vertical z within the mixed layer, sigma σ at
the bottom and isopycnal ρ within the interior (BM’s lecture).



Discretization

Vertical discretization
I NEMO’s z-coordinate has an irregular resolution, higher (typically

δz ∼ 1−5m) in the near-surface and lower (typically
δz ∼ 100−300m) at depth.

I Indeed vertical gradients are stronger near surface, which requires a
higher resolution.

I This surface bias also relates to the larger interest in surface ocean
for biological and weather/climate applications and by the lack of
knowledge about the abyssal ocean.



Discretization
Location of variables at each grid cell :

I Most ocean models such as NEMO use the so-called Arakawa C-grid.
I This arrangement ensures important conservation properties for

scalar variables.
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Figure 11 – Schematic of NEMO’s Arakawa-C grid (Madec et al 2016).



Discretization

Relation between space and time resolution :
I "Courant-Friedrich-Lewy" (CFL) criterion : any information should

not travel more than one grid cell in one timestep :

Uδ t < δx

with U either the wave or advective velocity.
I Typical climate ocean model of timestep δ t ∼ 1h and resolution

δx ∼ 100km :

U <
δx

δ t
∼ 20m/s

I External gravity waves of phase speed cg ∼ 200m/s are allowed by
the equation of sea level η and would cause numerical instabilities !
And they are not crucial to ocean circulation. Most common
solution : filtering them out.
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Lateral physics

General considerations :
I Lateral exchanges are enhanced in the ocean because no work is

required against the buoyancy (or gravity) force.
I They are believed to be dominated by the stirring of oceanic

properties by quasi-geostrophic mesoscale eddies.
I Having said that, it is fair to say that little is known about the actual

level of horizontal mixing by mesoscale eddies and the value chosen
by modellers responds to numerical stability constraints.

I Indeed, horizontal mixing operators and coefficients must be tuned
to prevent any numerical instability to develop at the small scale,
while at the same time not smooting too much the fine-scale oceanic
structures.



Lateral physics

Lateral tracer physics :
I Mesoscale eddies are known to stir tracers (θ ,S) along isopycnals,

rather than along horizontal surface. The horizontal Laplacian
operator is therefore slightly rotated to become isopycnal. Typically,
κhT ' 100m2/s for a global model, but this value should decrease
with increasing resolution as mesoscale eddies start being explicitely
resolved.

I Mesoscale eddies restratify the ocean, which is not accounted for by
a diffusive operator. Indeed, they are mostly formed by baroclinic
instability extracts potential energy. A suitable parametrization of
this effect is the addition of so-called "eddy-induced velocities" uEIV.



Lateral physics

Lateral momentum physics :
I Resolving small-scale dynamical structures is crucial because most of

the ocean kinetic energy lies at the mesoscale.
I Hence a bilaplacian horizontal operator ∆2

h = ∂4

∂x4 + ∂4

∂y4 is preferred :
it is more scale-selective, so that it permits smaller dynamical
structures for a given resolution.



Lateral physics

Lateral boundary conditions :
I Tracers : to a very good approximation (neglecting geothermal

fluxes), no lateral exchanges occur at the boundary with solid Earth.
I Momentum :

I No normal flow at lateral boundaries
I But the condition on tangent flow is more challenging to determine.

A continuum of options between free-slip and no-slip.



Vertical physics

General considerations :
I At the small scale, turbulence occurs over all three directions of

space, but because of gravity, the gradients of physical properties are
mostly vertical.

I Hence parametrized with vertical diffusivity coefficients.
I The core of vertical physics in an ocean model is the parametrization

of turbulence, a general theoretical framework giving the values of
diffusivities as a function of the large-scale (resolved) structure of the
flow.



Vertical physics
The Turbulent Kinetic Energy (TKE) scheme :

I Most used turbulence scheme in NEMO, although not the only one.
I Principle : resolve a simplified prognostic equation for the turbulent

(unresolved) kinetic energy u′2 and assume that vertical turbulent
diffusivities scale with it.

I Relation TKE - diffusivities :

κzu ∝ l

√
u′2

κzT = κzS =
κzu

Pl

with l a vertical mixing length scale and Pl the Prandtl number.
I A few comments on the prognostic TKE equation :

I Vertical shear ∂uh
∂z is always a source of turbulence while vertical

stratification ∂ρ

∂z can either be a source (if unstable) or a sink (if
stable).

I External gravity wave breaking is included as a surface source of
turbulent kinetic energy, as are internal waves breaking in the mixed
layer through an additional source distributed within that layer.



Vertical physics

The convection scheme :
I In the case of static instability, convection should efficiently mix

water masses. However, convection is not allowed due the
hydrostatic assumption.

I The Enhanced Vertical Diffusion (EVD) scheme is very simple : when
static instability occurs

κzT = κzS = κzu ' 10m2/s

so that within a few hours of simulation, stability is restored.



Vertical physics

In the interior ocean, where turbulence is weak and convection is absent :
I Diffusivities fall down to a background value, typically

κzT = κzS ' 10−5m2/s and κzu ' 10−4m2/s. They rather reflect the
poor knowledge of oceanographers about mixing in the abyssal
ocean.

But other parametrizations can be added :
I Internal wave-induced mixing distributes over the whole water column

the mixing resulting from a climatology of internal wave dissipation
energy. Its value typically does not exceed 0.01m2/s, so that it is
mostly active in the interior ocean and the stratified thermocline.

I Double diffusion mixing accounts for the instabilities caused by the
different molecular diffusivities of heat and salt in sea water. They
are the only ones accounting for differential mixing between salt and
heat, so that κzT 6= κzS .
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Vertical physics

Bottom boundary condition :
I Tracers : same as lateral boundaries, no flux.
I Momentum : bottom friction as a function of an internal wave

(mostly tidal) dissipation climatology.



Surface forcing

Already described in the previous lecture. Specificities in ocean models :
I Only solar heat flux QSW and river runoff R (and ice shelves/iceberg

melting in few configurations) are penetrative fluxes, the former with
an exponential decay and the second applying evenly over typically
∼ 30m.

I All other heat, water fluxes and the turbulent momentum flux (wind
stress) only apply to the first model level (∼ 1−5m thickness).

I Usually, vertical diffusivities are large in the first levels that define the
mixed layer, so that those surface fluxes are in practise very rapidly
redistributed over the mixed layer depth.

I But below typically 50m depth, the ocean does not feel directly
surface fluxes.



Surface forcing

Consequence for the formulation of fluxes :
I Surface momentum fluxes are a surface boundary condition of

vertical turbulent fluxes :

−ρ0w ′(0)uh
′(0)' ρ0κzu

∂uh

∂z

∣∣∣∣
0
→ τ0 = ρaCd |U(10m)|U(10m)

I Heat and water forcings are external sources Θ̇ and Ṡ for
temperature and salinity :

Θ̇(z) =
1

ρ0cwδz
Qtot(z) =

1
ρ0cwδz

(QSW (z) +QLW +QS +QL)

Ṡ(z) =
1

ρ0δz
(E −P−R(z))
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Surface forcing
Air-sea fluxes in an ocean model
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Figure 12 – Formulation of air-sea fluxes in an ocean model.
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Figure 13 – Formulation of air-sea fluxes in an ocean model. Turbulent fluxes
can either be directly taken from the forcing atmosphere ("flux method") or
computed online within the oceanic model ("Bulk method") from the ocean and
atmospheric surface parameters (temperature, humidity and wind).



Surface forcing

The special case of turbulent air-sea fluxes :
I In coupled mode, there is a continuous feedback between the ocean

and atmosphere at the coupling frequency (typically a few hours), so
that fluxes at the interface are consistent between both components.

I In the forced oceanic mode, turbulent fluxes can either be computed
from surface atmospheric parameters (so-called "Bulk form") or
taken as an external forcing from the atmosphere (so-called "flux
form").

I A major issue with both strategies is that the ocean has more inertia
than the atmosphere, so that the atmosphere should respond quickly
to any air-sea flux, which is only possible in coupled mode. We have
just stated that the forced oceanic configuration is an ill-defined
problem compared to the forced atmospheric one.

I Hence even in the forced mode, some atmospheric feedback must be
accounted for.



Surface forcing
The special case of turbulent air-sea fluxes :

I Advantage of the "Bulk form" : implicit feedback through sea
surface temperature variations.

I Problems of the Bulk form :

I Fluxes are computed from temporal averaged atmospheric parameters
(typically a few hours), which can induce large errors because fluxes
are nonlinear (the average flux is not the flux deduced from averaged
parameters).

I The "Bulk" formulas used might differ from those of the atmospheric
forcing model, which causes an inconsistency between both models

I Trick with the "flux form" : adding a sea surface temperature (SST)
restoration which mimics the coupling and ensures reasonable
temperatures :

Qtot → Qtot + αr (SST −SSTref )

with αr ∼−50W /m2/◦C the restoration factor and SSTref a
reference SST.

I Problem of the flux form : which SSTref to use ?
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Surface forcing

Conclusion : coupled ocean-atmosphere modelling is always preferable for
oceanic applications !



Surface forcing

Historical versus hindcast modes :
I Hindcast mode : forced by an atmospheric hindcast, so that the

historical chronology of past events can be reproduced by the ocean.
Although a large part of ocean variability is also chaotic and not
related to atmospheric forcing !

I Historical mode : uses a free atmospheric model only forced by
historical anthropogenetic concentrations of greenhouse gases (and
sometimes aerosols) as the forcing. The general warming trend can
be reproduced, but no historical chronology is expected because no
observation assimilated !



Model error and ensemble modelling

Sources of error inherent to ocean modelling :

I Errors related to the approximations of the Boussinesq equation
system ;

I Errors due to the closure of turbulence in the Reynolds-averaged
framework ;

I Time and space numerical discretization errors ;
I Errors related to initial conditions and surface forcing.

The nonlinear nature of oceanic circulation predicts that any small error
will tend to exponentially increase until reaching saturation : the
"butterfly effect" !
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Model error and ensemble modelling

Ensemble numerical modelling :
I Principle : sample the various sources of error (typically initial

conditions, physics or atmospheric forcing).
I Applications :

I Document or reduce errors in weather, ocean and climate predictions.
I Study the chaotic part of ocean variability, which is not directly

related to any forcing.
I Interpret observations and evaluate more accurately ocean models.

A new paradigm for ocean modelling !
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Example 1 : regional ocean model
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Figure 14 – NEMOMED12 domain and bathymetry (Waldman et al 2017a).



Example 1 : regional ocean model

Specificities of regional models :
I A higher resolution can be afforded :

I Physics can be made eddy-resolving (resolving mesoscale eddies, that
is ∼ 1/10◦).

I Bathymetry can better resolve channels, straits and interactions with
topography.

I Atmospheric forcing whose regional features can be made more
accurate.

I Lateral boundary conditions at their open boundaries must be
specified.



Example 1 : regional ocean model
NEMOMED12 model :

I Regional NEMO configuration on the Mediterranean Sea, a
semi-enclosed mid-latitude sea.

I At its only open boundary with the global ocean, in the
near-Gibraltar Atlantic Ocean, θ , S and η are restored towards an
oceanic reanalysis and the domain is assumed to be closed.

I High-resolution regional modelling is required by its key exchanges at
narrow straits, key high-resolution atmospheric jets and the need to
resolve mesoscale dynamics. Its horizontal resolution is 1/12◦, that is
∼ 6−8km, it is hence named an eddy-permiting model because it
starts resolving mesoscale eddies.

I Vertical resolution ranges from 1m at surface to ∼ 100m at the
bottom.

I Hindcast mode : the atmospheric flux forcing is a 12km resolution
regional atmospheric reanalysis covering the period 1979–2013,
meaning that observations are assimilated.

I Most of the physical options are identical to those presented before.
I Initial conditions are from an oceanic climatology.



Example 2 : global ocean climate model

Figure 15 – Schematic of CNRM-CM6 coupled model.



Example 2 : global ocean climate model

CNRM-CM6 global coupled climate model :
I Participates in the next Climate Model Intercomparison Programme

(CMIP6) in the framework of the International Panel on Climate
Change (IPCC) sixth Assessment Report (AR6).

I Includes the main components of the climate system : ocean, sea ice,
atmosphere, continental surfaces and atmospheric aerosols

I Horizontal resolutions are typically 1◦ for all components, the vertical
oceanic resolution being identical to NEMOMED12 regional
Mediterranean model.

I Historical mode : solar radiations, anthropogenetic greenhouse gases
and aerosols (both natural and anthropogenetic) are the only
time-varying external forcings.

I 10-member initial state ensemble to document the internal climate
variability.

I Priorly equilibrated in a so-called pre-industrial control simulation.



Example 2 : global ocean climate model

Ocean component : NEMO 1◦

I Physical parametrizations essentially identical to those of
NEMOMED12. The only notable difference is the inclusion of the
mesoscale eddy-induced velocity parametrization for tracers
(temperature and salinity), because mesoscale eddies are not
resolved.

I The ocean surface is fully coupled with the atmosphere at a 6-hourly
frequency



Example 2 : global ocean climate model

Sea ice component : GELATO model embedded into NEMO
I It resolves both the sea ice and snow (above sea ice) dynamics and

thermodynamics, including their exchanges with both the
atmosphere and ocean.

I Prognostic variables are the sea ice and snow volume and enthalpy,
the snow density and the sea ice surface, salinity and age.

I Over each oceanic grid cell, a fraction between 0 and 1 of sea ice
area covered with snow is present.



Practical aspects of numerical modelling

Where do I read the physical description of my run ?
I The core of the model is written in its Fortran routines, and unless

specific model development is required, no intervention is needed.
I Most of the options that users might want to modify are written in a

so-called namelist, which is a file specifying the values for the
corresponding parameters.

I A set of fundamental options must be specified as compliation keys,
in a separate file. Those options are read during the model
compilation so that once it is compiled no further change can be
made on them.



Practical aspects of numerical modelling

Grid and mask variables :
I Longitudes, latitudes, depths, land-sea masks and scaling factors

(δx , δy , δz) are variable at each grid point and differ between the
T-grid and the grids for velocities (U-grid, V-grid and W-grid).

I An important consequence of this is that all space averages should
be computed as ponderate means that account for each grid cell’s
volume, e.g. :

< θ >=
Σθδxδyδz

Σδxδyδz

with < θ > an arbitrary 3D average.
I Another consequence, although of lesser importance, is that at a

given location (i , j ,k), the T-grid can be over the sea while the
U-grid (or V-grid) is over land, or vice versa.



Practical aspects of numerical modelling

Online and offline diagnostics : the example of zonal temperature
advection u ∂θ

∂x .
I Online diagnostic : storage of its contribution to the temperature

trend during the model computation. Hence at the model time step,
with the model mathematical formulation and numerical scheme for
tracer advection.

I Offline diagnostic : trying to retrieve it after the run has already been
performed, from the model outputs u and θ which are generally
stored every month or day. Errors : the computation is not done at
the model time step, and the mathematical formulation and
numerical scheme used might not be identical to those of the model.

Conclusion : online diagnostic is always preferable, but in practice some
diagnostics have to be performed offline !
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