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ABSTRACT

Because poor visibility conditions have a considerable influence on airport traffic, a need exists for accurate

and updated fog and low-cloud forecasts. Couche Brouillard Eau Liquide (COBEL)-Interactions between

Soil, Biosphere, and Atmosphere (ISBA), a boundary layer 1D numerical model, has been developed for the

very short-term forecast of fog and low clouds. This forecast system assimilates local observations to produce

initial profiles of temperature and specific humidity. The initial conditions have a great impact on the skill of

the forecast.

In this work, the authors first estimated the background error statistics; they varied greatly with time, and

cross correlations between temperature and humidity in the background were significant. This led to the

implementation of an ensemble Kalman filter (EnKF) within COBEL-ISBA. The new assimilation system

was evaluated with temperature and specific humidity scores, as well as in terms of its impact on the quality of

fog forecasts. Simulated observations were used and focused on the modeling of the atmosphere before fog

formation and also on the simulation of the life cycle of fog and low clouds. For both situations, the EnKF

brought a significant improvement in the initial conditions and the forecasts. The forecast of the onset and

burn-off times of fogs was also improved. The EnKF was also tested with real observations and gave good

results. The size of the ensemble did not have much impact when simulated observations were used, thanks to

an adaptive covariance inflation algorithm, but the impact was greater when real observations were used.

1. Introduction

Low-visibility conditions often cause problems at many

international airports. Such conditions may reduce the

landing–takeoff traffic by a factor of 2, leading to delays

or even cancellations of flights. This is why accurate

forecasts of these conditions have become an important

issue. Each airport defines a set of visibility and ceiling

thresholds below which safety procedures, called low-

visibility procedures (LVP), are applied. At the Paris,

France, Charles De Gaulle Airport, the threshold values

are set at 600 m for visibility and 60 m for the ceiling.

Various approaches are employed to forecast low-

visibility conditions. For airports located in flat terrain,

1D models are suitable for the nowcasting of radiation

fog events (Bergot and Guédalia 1994a,b). They are

currently used in real time to forecast fog at the local

scale (e.g., Clark 2002, 2006; Herzegh et al. 2003). The

1D boundary layer model Couche Brouillard Eau Liq-

uide (COBEL), coupled with the land surface scheme

Interactions between Soil, Biosphere, and Atmosphere

(ISBA; as documented in Bergot et al. 2005) has been in

operational use since 2005 at Charles de Gaulle Airport

to provide estimated times for the onset and lifting of

LVP conditions.

Fog is a phenomenon that evolves at small spatial

and time scales. Its 1D modeling involves interactions

between many parameterizations: turbulence, micro-

physics, radiative scheme, and surface–atmosphere ex-

changes. This highlights the importance of working with

accurate initial conditions because the quality of the

COBEL-ISBA forecasts is dependent on the initial

conditions (Bergot and Guédalia 1994a; Roquelaure

and Bergot 2007; Rémy and Bergot 2009). This paper

aims to improve fog forecasting by using an ensemble

Kalman filter (EnKF; Evensen 1994, 2003). Theoreti-

cally, ensemble filters are an adequate method for taking

the atmosphere variability into account in the assimila-

tion scheme of nonlinear systems, such as boundary layer

1D models. They have recently been implemented in
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various oceanic and atmospheric models (Houtekamer

et al. 2005; Zhang 2005; Hacker and Snyder 2005; Hacker

and Rostkier-Edelstein 2007; among others). Here, an

implementation of this method for 1D fog forecasts is

presented, using both model simulated and real obser-

vations.

The framework of this study is outlined in section 2.

Two sets of simulated observations were created: one

with mostly clear-sky conditions at the initialization, to

study the formation of fog, and the other with frequent

occurrence of fog and low clouds. Section 3 presents

the setup of the EnKF, and section 4 shows the results

with the two sets of simulated observations. Next, in

section 5, we focus on results obtained from a system

using real observations instead of simulated ones. In

section 6, the impact of the ensemble size on the per-

formance of the EnKF, for simulated and real obser-

vations, is discussed. Finally, section 7 summarizes the

results.

2. Framework of the study

a. The COBEL-ISBA assimilation prediction system

1) THE MODEL

COBEL-ISBA consists of the coupling of the high-

resolution atmospheric boundary layer 1D model COBEL

(Bergot 1993; Bergot and Guédalia 1994a,b) with the

seven-layer land surface scheme ISBA (Noilhan and

Planton 1989; Boone 2000). To be able to adequately

forecast radiative fog events, it possesses a high vertical

resolution: 30 levels between 0.5 and 1360 m, with 20

levels below 200 m. The physical parameterizations

used in COBEL-ISBA consist of

d a turbulent mixing scheme with a 1.5-order turbulence

closure that uses a prognostic turbulent kinetic energy

(TKE) equation. The mixing length differs for stable

(Estournel 1988) and for neutral or unstable condi-

tions (Bougeault and Lacarrere 1989);
d a warm microphysical scheme adapted to fog and low

clouds in temperate regions; and
d detailed longwave and shortwave radiation transfer

schemes.

COBEL-ISBA is run at 1-h intervals and provides up to

8 h of LVP forecasts. The inputs of the model are the

initial conditions and mesoscale forcings. Mesoscale

forcings (i.e., geostrophic wind, horizontal advection,

and cloud cover above the model column) are given by

the Numerical Weather Prediction (NWP) model Aire

Limitée Adaptation Dynamique Développement In-

ternational (ALADIN, available online at http://www.

cnrm-game-meteo.fr/aladin/).

2) THE ASSIMILATION SCHEME

The initial conditions are given by a two-step assimi-

lation scheme, using local observations (Bergot et al.

2005). The observation system used at the Charles de

Gaulle Airport is designed to provide up-to-date in-

formation on the state of the surface boundary layer

temperature and moisture. It includes a weather station

that provides 2-m temperature and humidity; visibility

and ceiling; a measurement mast that gives temperature

and humidity observations at 1, 5, 10, and 30 m; radia-

tive fluxes (shortwave and longwave) observations at 2

and 45 m; and soil temperature and water content be-

tween the surface and 240 cm.

The assimilation system uses information from a first

guess or background (i.e., a previous 1-h COBEL-ISBA

forecast), local observations, and profiles from the

ALADIN NWP model to generate a best linear un-

biased estimator (BLUE) for initial conditions of tem-

perature and specific humidity:

xa 5 xb 1 K(yo � Hxb) and (1)

K 5 BHT(HBHT 1 R)�1. (2)

In this equation xa is the analysis, xb is the first guess or

background, yo are the observations, K is the Kalman

gain that accomplishes the observation weighting, B and

R are the error variance and covariance matrices of the

background and of the observations, and H is the for-

ward operator—that is, the matrix that interpolates in-

formation from the model grid to the observation grid.

Because the dimension of the system is low, matrices can

be explicitly inverted and there is no need for a varia-

tional algorithm. The ALADIN data are taken as ob-

servations for the upper levels of the model domain, so

a part of R corresponds to the error variances and co-

variances of the ALADIN profiles. The covariances

between the other observations are zero. In the opera-

tional setup, the error statistics are imposed arbitrarily

to allow the initial profile to be close to observations

near the surface and closer to the ALADIN profiles

above. The cross correlation of temperature and humid-

ity errors in the background are zero, and the operational

assimilation scheme is monovariate. Our objective is to

compute flow-dependent background error statistics and

to build a multivariate assimilation scheme by taking into

account the cross correlations of temperature and hu-

midity errors in the background.

When a layer of cloud is detected, an additional step

uses a minimization algorithm together with measure-

ment of radiative fluxes at the ground and at 45 m to es-

timate cloud thickness. The radiation scheme of COBEL
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is used to compute the modeled radiative fluxes at 2 and

45 m, using different initial thicknesses of the fog layer.

The best estimate of the initial fog thickness is the one

that minimizes the error between modeled and observed

radiative fluxes (see Bergot et al. 2005 for more details).

The relative humidity profile is then modified within the

saturated layer.

The soil temperature and water content profiles used

to initialize ISBA are obtained directly by interpolation

of soil measurements.

b. Simulated observations

The Observing System Simulation Experiment (OSSE)

is adequate to study the accuracy of an assimilation

scheme (e.g., Huang et al. 2007). It consists of generating

pseudo-observations by adding perturbations to a refer-

ence run of the model. The pseudo-observations are then

assimilated, and the initial state and forecast can be

compared to the reference run. The advantages of this

method are as follows:

d The same physical processes are underlying both ob-

servations and simulations, which leads to the fact that

there are no modeling errors. The only source of error

when using simulated observations are the initial

conditions, which is why they are used often in data

assimilation studies. The errors in the initial condi-

tions originate only in the observations and first-guess

errors, themselves originating from errors in initial

conditions propagated by the previous forecast. The

lack of observations for certain parameters (e.g., the

thickness or water content of a cloud layer) does not

allow the assimilation scheme to entirely correct the

errors of the first-guess field. The quality of initial

conditions thus depends solely on the observations

used and on the assimilation scheme.
d The framework provides the simulated observation

for the entire domain of COBEL-ISBA.
d Last, it is possible to create a large variety of obser-

vation sets that accommodate our needs for evaluation

purposes.

The perturbations added to the reference run were all

independent from each other, meaning that the errors of

the ALADIN profiles at different levels are uncorrelated,

which is not the case when using real observations. When

using simulated observations, the R matrix is thus com-

pletely diagonal.

There are two sets of simulated observations: one for

the study of clear-sky night and shallow-fog situations

(NEAR-FOG); and the other for the study of frequent

deep fogs (FOG).

FIG. 1. ‘‘Truth’’ for (a) 1-m temperature and (b) liquid water path for NEAR-FOG.
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1) THE NEAR-FOG SITUATION

Simulated observations corresponding to clear-sky

and shallow-fog situations were produced. This obser-

vation set will be referred to as NEAR-FOG. Fifteen

days of simulated observations were generated, during

which no fog occurred for the first 10 nights. Shallow-fog

situations developed for the remaining five nights. Their

thicknesses did not exceed 10 m. Twenty-one hours of

LVP conditions were ‘‘observed’’ for this situation. The

skies above the model column were entirely clear, which

ensured strong nighttime cooling. Figure 1 shows the

‘‘true’’ temperature at 1 m and corresponding liquid wa-

ter path. Close to ground level, the daily highs lay in the

208–228C range, whereas the lows were around 88–98C.

Day and night relative humidity varied greatly from 30%

to 100%, corresponding to typical conditions observed

during autumn and winter over land.

Figure 2 shows the mean root-mean-square error

(RMSE) and the mean bias of the forecasted tempera-

ture and specific humidity versus forecast time and al-

titude when using the operational setup. The influence

of the observations can be seen by the lower values of

RMSE at initialization time below 50 m, especially for

temperature. For temperature (Fig. 2c) and specific hu-

midity (Fig. 2a), most of the increase of the RMSE oc-

curred during the first 2 h of forecast time. For specific

humidity, the maximum of RMSE is always at the surface,

whereas for temperature the RMSE no longer showed

large differences between the lower and upper part of the

domain after 4 h of forecast time. The analysis is nearly

unbiased for both specific humidity and temperature

(Figs. 2b,d). The specific humidity bias became positive

with forecast time, with a maximum close to the ground.

A cold bias appeared rapidly for the forecasted temper-

ature (Fig. 2d) and increased regularly with the forecast

time, with maxima close to the ground level and above

the top of the mast (30 m).

2) THE FOG SITUATION

This situation was designed to study the fog and low-

cloud life cycle. Fog and low clouds occurred during

many nights of the 15-day observation set referred to as

FOG because of high moisture combined with strong

nighttime cooling due to clear skies above the model

FIG. 2. (left) RMSE and (right) bias of (bottom) temperature and (top) specific humidity for

NEAR-FOG. Isolines are every 0.05 K for temperature bias and RMSE every 0.05 g kg21 for

specific humidity RMSE, and every 0.025 g kg21 for specific humidity bias.
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column. Figure 3 shows the true temperature observa-

tions at 1 m and the true liquid water content integrated

over the model column. In total, 98 h of LVP conditions

were ‘‘observed’’ in these 15 days, with fog occurrence

on 11 nights. Stratus also occurred in the upper part of

the model column on days 7 and 8, which were not counted

as LVP. Various fog situations occurred, from shallow

early-morning fog to fog layers more than 200 m thick.

Figure 4 shows the mean RMSE and bias of temper-

ature and specific humidity when using the operational

setup with the FOG situation. It is interesting to com-

pare it with Fig. 2. The initial profiles of specific humidity

(Fig. 4a) show a larger RMSE for FOG than for NEAR-

FOG over the whole domain. This is due to errors in the

initialization of fog and low clouds. The increase of

RMSE with forecast time is slower for FOG than for

NEAR-FOG, and after 2 h of forecast, the values close

to the surface are similar for both situations. The RMSE

above 100 m remain significantly higher for FOG than

for NEAR-FOG for all forecast times. The specific hu-

midity bias (Fig. 4b) is close to zero for all forecasts time

below 50 m, whereas it is negative above that height. For

all heights, the specific humidity bias does not vary much

with forecast time. The RMSE of forecasted tempera-

ture (Fig. 4c) increases much faster in the lower part of

the domain for FOG than for NEAR-FOG (Fig. 2c) and

reaches a maximum of 1 K after 7 h of simulation. A

maximum appears between 50 and 150 m of altitude,

which corresponds to situations where the forecasted

height of the fog is different from the simulated obser-

vations. The inversion at the top of the fog layer signif-

icantly increases the error if the forecasted cloud layer

thickness is not the same as the observed one. The

temperature bias (Fig. 4d) also increases with forecast

time, with a maximum at the surface.

3. Setup of the ensemble Kalman filter

a. Diagnosis of background error correlations

In the operational setup, the background error cor-

relations were fixed in time and in the vertical direction.

We diagnosed these correlations, using the National

Meteorological Center (NMC) method (Parrish and

Derber 1992). This method approximated the forecast

error from a set of differences between several forecasts

valid at the same time. Figure 5 presents the tempera-

ture and temperature-specific humidity correlations at

analysis times of 0600 and 1500 UTC , averaged over the

1 November–31 January period. The error statistics follow

a marked diurnal cycle, with higher values during the day

corresponding to the development of a mixed boundary

layer. The cross correlations between temperature and

FIG. 3. As in Fig. 1, but for FOG.
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specific humidity errors are higher during the night than

during the day. At 0600 UTC and below 100 m, the cross

correlations are nearly symmetric—that is, the correla-

tion between the background temperature error at 10 m

and humidity error at 50 m, for example, is close to the

correlation between the background humidity and tem-

perature errors at 10 and 50 m, respectively.

This analysis showed that we needed to build a more

adaptive assimilation system that was able to estimate

the flow-dependent background covariances for each

run of the model and to take the cross correlations be-

tween temperature and humidity into account. The

EnKF was a simple method to achieve that.

b. Construction of the ensemble

We implemented the ‘‘perturbed observations’’ con-

figuration of the EnKF because it increases the spread of

the ensemble as compared to other configurations. For

more details on this, refer to Burgers et al. (1998). This

version of the EnKF consists of using an ensemble of

initial conditions that is built by adding white noise per-

turbations to the observations and mesoscale forcings.

In Eq. (1), for each ensemble member i the observa-

tion yi
o is replaced by yi

o 1 Normal(0, si
o). The observation

error variances si
o are known for the observations from

the mast and the weather stations. As ALADIN profiles

were also used as observations, their error statistics were

estimated using a method proposed by Desroziers et al.

(2005):

s 2
o 5 (Hxb� yo)(Hxa� yo). (3)

Soil observations and mesoscale forcing (i.e., geostrophic

wind, advection of temperature, and humidity) error

statistics were provided by a sensitivity study carried out

by Roquelaure and Bergot (2007).

The model has 30 levels for the two control variables

of temperature and specific humidity (liquid water

content is assimilated separately), which makes the di-

mensions of the model space in the assimilation scheme

rather small, 60.

c. Validation of the prior ensemble

In this section, the realism of an ensemble of 32 back-

grounds or priors is assessed. This assessment was carried

out using rank histograms, also known as Talagrand his-

tograms (Talagrand et al. 1997; Hamill 2001). It consists of

ranking the verifying data in the sorted ensemble. Rank

FIG. 4. As in Fig. 2, but for FOG.
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histograms are generated by repeatedly comparing the

rank of the verification (usually an observation) relative

to values from an ensemble sorted from lowest to

highest. They provide a rapid diagnosis of the ensemble

reliability. A lack of variability in the ensemble will give

a U-shaped rank histogram, whereas a convex shape

indicates that the observations are most of the time

encompassed in a subset of the actual ensemble, that is,

that the ensemble spread is too large. Skewed histo-

grams indicate a bias in the ensemble, that is, that the

ensemble mean is biased. A flat shape implies equal

probability of the verifying data and of the ensemble,

hence that the ensemble is reliable. According to Hou

et al. (2001), a rank histogram can be defined as flat if the

adjusted missing rate is lower than 10%. To compute the

adjusted missing rate, the missing rate, which is the sum

of the relative frequencies of the two extreme (the first

and the last) categories, is first computed. The adjusted

missing rate is then defined as the difference between

the expected missing rate 2/(N 1 1) and the missing rate.

Figure 6 shows the rank histograms of the 32-member

prior ensemble for temperature and humidity for the

FOG and NEAR-FOG situations. The rank histograms

were computed with two sets of verifying data: the

simulated observations on the left and the truth on the

right, to account for observation error. For both FOG

and NEAR-FOG, the rank histogram was flat for tem-

perature following the definition of Hou et al. (2001),

which means that the ensemble was reliable for tem-

perature. The missing rate (i.e., the sum of the relative

frequency of the two extremes) is small according to the

definition of Hou et al. (2001), which means that the

spread of the ensemble was large enough (Figs. 6a,e).

When observation error was taken into account (Figs.

6b,f), the convex shape of the rank histogram shows that

the spread was even slightly too large. The small cold

bias of the reference simulation (see Figs. 2 and 4) was

reflected in the sloped rank histograms, which indicates

that a majority of the ensemble members were generally

too cold.

For specific humidity, the ensemble spread was in-

sufficient by a greater amount for FOG than for NEAR-

FOG (Figs. 6c,g). When observation error was taken

into account (Figs. 6d,h), the rank histograms were flat,

FIG. 5. Diagnosis of background correlations using the NMC method. Correlations of (top) temperature and of

(bottom) temperature with specific humidity at (left) 0600 and (right) 1500 UTC over the 1 Nov 2005 to 31 Jan 2006

period.
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following the definitions of Hou et al. (2001). This means

that the ensemble was fairly reliable, but that the obser-

vation error for specific humidity was too large, especially

fog in the FOG situation. The positive (NEAR-FOG)

and negative (FOG) specific humidity bias of the ref-

erence simulation (see Figs. 2 and 4) were reflected by

the corresponding bias of the ensemble in both cases.

d. EnKF algorithm and its limitations

The EnKF is an adaptation of the Kalman filter (KF)

model to nonlinear systems using Monte Carlo sampling

(in the propagation step) and linear updating (correc-

tion or analysis step). In EnKF, an ensemble of back-

grounds is integrated forward in time using the

nonlinear forward model. A set of N analyses is thus

propagated by the model into an ensemble of N back-

grounds. At update times, the error covariance is calcu-

lated from the ensemble. The traditional BLUE update

equation [Eq. (1)] is used to assimilate observations and

build the initial conditions of temperature and humidity,

with the Kalman gain calculated from the background

error covariances [the B matrix of Eq. (1)] provided by the

ensemble. At this stage, the ensemble of N backgrounds

(or priors) is updated into N analyses (or posteriors).

The ensemble allowed us to estimate the cross correla-

tions of temperature and humidity errors in the back-

ground; the EnKF provided the possibility of building

a multivariate assimilation scheme.

1) GAUSSIAN HYPOTHESIS

Although the EnKF does not require a linearization

of the model, it is still based on the hypothesis that

perturbations evolve linearly, so that initial Gaussian

perturbations (i.e., perturbations completely represented

by their mean and covariance) remain Gaussian within

the assimilation time window. For a strongly nonlinear

system, such as COBEL-ISBA, this assumption is gen-

erally not true. The variability of the measurement and

state variables is small compared to their value, which

means that the perturbations can be satisfactorily ap-

proximated to Gaussian. This constraint imposes a short

(i.e., 1 h) assimilation cycle when the EnKF is used with

COBEL-ISBA.

2) FILTER DIVERGENCE

The EnKF is often subject to filter divergence, that is,

the distribution produced by the filter drifts away from

the truth. Filter divergence normally occurs because the

FIG. 6. Rank histograms for (a)–(d) NEAR-FOG and (e)–(h) FOG, of (a),(b),(e),(f) temperature and

(c),(d),(g),(h) specific humidity. The y axis shows the frequency of the verifying observation; the x axis gives the bins

formed by the ensemble. Verifying data are the simulated observations on the left; the truth on the right (i.e.,

observation error is accounted for in these rank histograms.
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prior probability distribution becomes too narrow (loss

of ensemble spread) and the observations have pro-

gressively less impact on the model updates. This

problem can be partly controlled by using a large en-

semble; however, for practical field applications, the

ensemble size needs to be kept relatively small for

computational efficiency. Two methods for avoiding

filter divergence are a configuration of the EnKF us-

ing a pair of ensembles (Houtekamer and Mitchell

1998; Houtekamer et al. 2005) and covariance inflation

(Anderson and Anderson 1999; Anderson 2007, 2009);

in this work, the latter method was chosen. Covariance

inflation attempts to avoid filter divergence by simply

inflating the covariance of the ensemble. Here, the

adaptive covariance inflation of Anderson (2007) was

applied. This algorithm adjusts the variance of the en-

semble so that the observation falls within a reason-

able distance, according to both ensemble variance and

observation error variance, of the ensemble mean. It

can be used only with observations with uncorrelated

errors.

3) LOCALIZATION

The localization problem consists of spuriously large

background covariance estimates between greatly distant

grid points (Hamill et al. 2001). Such large covariances

do not correspond to real correlations of errors between

distant points; they are the results of noise in the estimate

of covariances through an ensemble. This problem can be

fixed by using a larger ensemble and by multiplying the

B-matrix estimate element-wise by a correlation function

with a compact support (Hamill et al. 2001); we used

an exponential-based function, which was set to zero be-

low a threshold level. The vertical length scale used was

200 m.

4. Ensemble Kalman filter assimilation of
simulated observations

In this section, the simulations are evaluated against

the true state of the atmosphere, generated by the ref-

erence run (REF). The EnKF was run with 32 members

and the cross correlations of temperature and specific

humidity were computed and used in the assimilation

scheme. We used the multivariate configuration of the

EnKF. In this study, this experiment will be referred

to as ENKF32. For temperature and specific humidity

scores, we will emphasize the results in the first 100 m of

the model column, because this is the critical domain for

the forecasting of radiation fog events.

The errors of the ALADIN profiles are uncorrelated

between different levels within this framework. The

covariance inflation factor was thus computed using the

observations from the weather station, the mast, and the

ALADIN profiles.

a. Results of the EnKF with NEAR-FOG

This EnKF was assessed in terms of temperature and

specific humidity RMSE and bias for the NEAR-FOG

situation. Figure 7 shows the RMSE of temperature and

specific humidity with ENKF32, versus forecast time, as

a percentage of the RMSE of the REF experiment. It

also shows the bias difference between the two experi-

ments for temperature and specific humidity. As the bias

was of the same sign in both experiments, positive values

indicate that ENKF32 was worse in terms of bias than

REF.

For both temperature and specific humidity, the RMSE

(Figs. 7a,c) of the initial conditions was improved by

ENKF32. The improvement was larger above 50 m,

which is the domain where there are no observations

available. The background error variances computed by

the ensemble were generally smaller than the ones used in

the operational setup and also smaller than the estimated

error variances of the ALADIN profiles. In consequence,

the initial profiles were close to the background as com-

pared to REF. The improvement of the scores above

50 m shows that, in the NEAR-FOG situation, the guess

was closer to the real state of the atmosphere than the

synthesized ALADIN profiles. As simulated observa-

tions are used, this result is not surprising because the true

state of the atmosphere is also a forecast. The initial bias

(Figs. 7b,d) was more or less unchanged below 100 m and

showed a small degradation as compared with REF above

that height.

After 1 h of forecast, the improvement of tempera-

ture RMSE by ENKF32 was much reduced and re-

mained in the 5% range in the lower part of the domain

until the end of the simulations. Above that height, the

improvement was larger. The RMSE of forecasted

specific humidity, on the other hand, was improved by

15%–20% below 50 m for all forecast times, and by

25%–35% above that height. The bias of forecasted

specific humidity remained constant for all forecast

times after a slight degradation in the first hour of sim-

ulation. The forecasted temperature bias also varied

little after 1 h of forecast. It was slightly degraded below

30–50 m and above 300–400 m as compared to REF,

and it lay in the same range as REF elsewhere.

Overall, the RMSE was improved slightly for specific

humidity and considerably for temperature. The large

improvement in initial conditions became smaller in the

forecast, which shows the diminishing influence of initial

conditions with longer forecast times. The temperature

and specific humidity bias were both slightly degraded
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by ENKF32 as compared with REF, which was also

a consequence of being closer to the background in the

initial conditions. The small model bias (see Fig. 2) was

magnified in this case because the EnKF trusted the

background more in the construction of the initial pro-

files, as compared to the operational setup.

b. Results of the EnKF with FOG

Here, the model was also assessed in terms of hit and

false alarm ratios on the forecast of LVP conditions, in

addition to scores of temperature and specific humidity.

Scores for the onset and burn-off time of LVP conditions

were also computed.

1) SCORES FOR TEMPERATURE AND SPECIFIC

HUMIDITY

Figure 8 presents the RMSE and bias of temperature

and specific humidity with ENKF32, as compared to

those obtained with REF. It is interesting to compare

the scores with Fig. 7 to see the impact of frequent fog

on the performance of the EnKF. The RMSE of ana-

lyzed specific humidity and temperature (Figs. 8a,c)

showed the same pattern between FOG and NEAR-

FOG; a larger improvement as compared to REF above

100 m than below, and also a larger improvement for

specific humidity than for temperature. The initial bias

(Figs. 8b,d) was left mostly unchanged, except for the

temperature bias above 600 m, which was slightly de-

graded.

The RMSE of forecasted specific humidity and tem-

perature varied greatly between NEAR-FOG and FOG.

Below 100 m, the initial improvement, as compared to

REF diminished in the first 2 h of forecast and then in-

creased to reach 30%–35% of improvement at the end of

the simulations. The fact that the temperature and spe-

cific humidity RMSE’s initial improvement persisted

during the forecast was due to a better forecast of fog

and low clouds thanks to better initial conditions (these

results are illustrated in the next subsection). False

alarms or nondetection of fogs had a strong impact on

both temperature and specific humidity forecast error.

The bias of forecasted specific humidity did not vary

much with forecast time after 1 h of forecast. It was left

unchanged below 50 m and slightly improved above, as

compared to REF. The forecast temperature bias fol-

lowed the same pattern as with NEAR-FOG. The deg-

radation below 50 m and above 500 m was slightly

larger with FOG.

FIG. 7. (left) RMSE of ENKF32 as a percentage of the REF RMSE and (right) bias of (ENKF32 2 REF)

for (bottom) temperature and (top) specific humidity for NEAR-FOG.
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2) FORECAST OF LVP CONDITIONS

Figure 9 shows the frequency distribution histogram

of the onset and the burn-off time of LVP events, for all

simulation times and forecast times, for the FOG situ-

ation. Simulations in which fog was already present at

initialization time were discarded for the computation of

the onset scores. For these simulations, it was mean-

ingless to compare the simulated and observed onset

times because the fog events considered had begun

before the initialization time. The errors larger than

240 min are grouped together in the 240-min column.

For both REF and EnKF experiments, the forecast of

the burn-off time was more accurate than that of the

onset time. This is because the fogs that occurred be-

tween days 11 and 15 were shallow, they lifted very soon

after sunrise, and the model forecasted these burn offs

accurately. The REF experiment (Figs. 9a,c) showed

a small early bias on the onset time. This was associated

with the small cold bias noted in REF (see Fig. 4).

ENKF32 brought an improvement in the prediction of

both the onset and burn-off times. The number of large

errors was significantly reduced, and the number of

simulations with errors smaller than or equal to 15 min

was much increased. The bias on the forecast of onset

time persisted, as the cold bias was not corrected by

ENKF32.

Tables 1 and 2 show the hit ratio (HR) and pseudo–

false alarm ratio (FAR) of LVP conditions for various

forecast times and for the REF and ENKF32 experi-

ments. In the case of rare event forecasting such as fog

and LVP conditions, the pseudo-FAR is convenient

because it removes the impact of the ‘‘no-no good

forecasts’’ (no LVP forecast and no LVP observed),

which mostly dominate the data sample and hide the

true skill of the LVP forecast system. If a is the number

of observed and forecasted events, b is the number of

not observed and forecasted events, and c is the number

of observed and not forecasted events, HR and pseudo-

FAR are then defined as follows:

HR 5
a

a 1 c
; pseudoFAR 5

b

a 1 b
.

Table 1 shows that the detection of LVP conditions was

improved for all forecast times. The improvement was

larger for longer forecast times, corresponding to the

largest improvements in temperature and specific humid-

ity RMSE as compared to REF. Also, the hit ratio of LVP

conditions did not decrease with time with ENKF32,

whereas it did with REF. This shows the strong influence

FIG. 8. As in Fig. 7, but for FOG.
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of the initial conditions on the forecast when the model

error has been removed by using simulated observations.

Table 2 shows that ENKF32 experienced slightly fewer

false alarms than REF. This is an interesting result because

an improvement in both HR and FAR is hard to obtain.

c. Impact of the EnKF on initial and forecasted lower
boundary layer structure

The situations we studied were characterized by swift

and intense changes from one boundary layer stratifi-

cation to another. This section will try to assess if the

overall improvement brought by the ensemble Kalman

filter on the scores was reflected in an improvement of

the initial and forecasted stratification of the atmo-

sphere. As mentioned before, this section will focus on

the lower boundary layer, that is, the first 100 m of the

COBEL-ISBA domain, where radiative fog occurs.

Figure 10 shows the initial and forecasted temperature

profiles in the first 100 m of the COBEL-ISBA domain

for REF and ENKF32, given by two simulations, one

starting on day 6 at 0700 UTC and the other on day 3 at

1100 UTC. The real state of the atmosphere and the

observations are also plotted. On day 6 at 0700 UTC,

a 60-m-thick fog was present, which evolved to a 75-m-

thick fog by 0900 UTC. The atmosphere was neutral

within the fog, with a strong temperature inversion on

top. On day 3 at 1100 and 1300 UTC, the sky was clear

and the atmosphere was slightly unstable because of

surface heating. The temperature analysis given by the

FIG. 9. (left) Frequency distribution histogram of the error on onset time (the LVP conditions

at initial time are not taken into account) and (right) burn-off time of LVP conditions for the

(top) REF experiment and (bottom) ENKF32 for FOG. Positive values correspond to a fore-

cast of onset or burn off that is too late. Errors .240 min are grouped in the 240-min column.

TABLE 1. HR of LVP conditions for various forecast times for the

FOG situation and for the REF and ENKF32 experiments.

1 h 2 h 3 h 4 h 6 h 8 h All

REF 0.93 0.89 0.89 0.88 0.86 0.84 0.88

ENKF32 0.95 0.92 0.93 0.95 0.93 0.93 0.94

TABLE 2. Pseudo-FAR of LVP conditions for various forecast

times for the FOG situation and for the REF and ENKF32

experiments.

1 h 2 h 3 h 4 h 6 h 8 h All

REF 0.07 0.05 0.07 0.10 0.12 0.18 0.09

ENKF32 0.04 0.03 0.02 0.06 0.08 0.15 0.07
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EnKF is closer to the real state of the atmosphere for the

two considered cases. REF was more influenced by the

observations than ENKF32. As a consequence, the op-

erational setup produced a stable initial temperature

profile while the atmosphere was slightly unstable,

whereas ENKF32 gave a slightly unstable initial tem-

perature profile. This improvement in the initial strati-

fication of the lower boundary layer led to a better

forecast. After 2 h of forecast, there were not much

difference in the stratification as forecasted by REF and

ENKF32; however, the latter was closer to the real state

of the atmosphere in both cases.

As illustrated by these two examples, ENKF32 pro-

vided initial profiles that were generally closer to the

true stratification of the atmosphere than REF. This is

probably the reason why the forecasts of temperature,

specific humidity, and fog events were also improved by

ENKF32 as compared to REF.

d. Impact of the cross correlations of temperature
and humidity errors in the background

In the ENKF32 experiment, the cross correlations of

temperature and specific humidity in the background

were taken into account. To assess the impact of these

cross correlations on the quality of the initial conditions,

an experiment called ENKF32_MONO was run without

taking these cross correlations into account; this exper-

iment was run with a monovariate configuration of the

EnKF. Figure 11 shows the temperature RMSE mean

over all simulations of ENKF32_MONO as a percent-

age of the temperature RMSE of ENKF32 versus fore-

cast time for FOG and NEAR-FOG. The scores were

not shown for specific humidity as they were mostly

similar. For NEAR-FOG, the impact of the cross cor-

relations was slightly negative for temperature RMSE

and slightly positive for specific humidity RMSE. For

FOG, the impact was significantly positive for both

temperature and specific humidity RMSE, especially for

forecast times larger than 3 h and below 100 m. For

NEAR-FOG and FOG, the bias on forecasted tem-

perature and specific humidity was not changed much

by the multivariate configuration of the EnKF. Overall,

the multivariate EnKF brought small changes for the

NEAR-FOG situation and an improvement for the

FOG situation, as compared to the monovariate EnKF.

For FOG, the quality of the fog forecasts (not shown)

FIG. 10. FOG temperature profiles of (a),(c) temperature at initialization time and (b),(d) temperature after 2 h of

simulation for simulations starting on (top) day 6 at 0700 UTC and (bottom) day 3 at 1100 UTC. REF is plotted by the

black continuous line, ENKF32 by the dashed line, and the truth by the gray line. Observations at analysis time are

plotted by black crosses.
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was also improved by the multivariate configuration of

the EnKF as compared to the monovariate configura-

tion. The different behavior between NEAR-FOG and

FOG was due to the fact that cross correlations were on

average larger for FOG than for NEAR-FOG.

To explain why the cross correlations were higher on

average for FOG than for NEAR-FOG, Fig. 12 shows

the temperature and temperature-specific humidity cor-

relations as computed by the 32-member ensemble for

two simulations: one starting on day 4 at 1200 UTC and

the other starting on day 6 at 0700 UTC. These corre-

lations were the ones used in the assimilation scheme to

compute the initial profiles of temperature and specific

humidity. On day 4 at 1200 UTC, the skies were clear

whereas on day 6 at 0700 UTC, 50-m-thick fog was

present at initialization time. Areas of high temperature

correlations (Figs. 12a,b) correspond to the mixed layer.

Its height varied considerably between day and night.

On day 6 at 0700 UTC, the top of the mixed layer

matched the top of the fog layer and the correlations were

very small above that height. On day 4 at 1200 UTC, the

top of the mixed layer lay at around 150 m. The cross

correlations differed a lot between the two dates. On day

6 at 0700 UTC, they were very high in the cloud layer

(i.e., below 50 m). This is because in a saturated environ-

ment the specific humidity equals the saturated specific

humidity, which depends on temperature. An error in

temperature automatically leads to an error in specific

humidity in these conditions. Strong negative cross cor-

relations occurred between humidity above the cloud

layer and temperature inside the cloud layer, with values

ranging from 20.6 to 20.8. These cross correlations were

not symmetric, there were no correlations between

temperature above the fog and specific humidity be-

low. The cross correlations were much lower on day 4

at 1200 UTC, whether they were positive (in the mixed

layer) or negative (above the boundary layer for tem-

perature). Because the occurrence of saturated condi-

tions is much more frequent during FOG than during

NEAR-FOG, the average cross correlations are also

larger on average.

5. Ensemble Kalman filter assimilation of real
observations

In this section, experiments are reported that used

real observations from Charles de Gaulle Airport, over

the winter of 2004/05. For this situation, the reference

experiment was called REAL. The EnKF was run with

8, 16, and 32 members and the cross correlation of tem-

perature and specific humidity errors was taken into

account. As for other situations, the experiments were

FIG. 11. Temperature of ENKF32_MONO RMSE as (left) a percentage of the ENKF32 RMSE and (right) bias of

ENKF32_MONO 2 ENKF32 vs forecast time for (top) NEAR-FOG and (bottom) FOG.
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called ENKF8, 16, and 32. This section focuses on

ENKF32; the impact of the ensemble size will be dis-

cussed in the next section. When using real observations,

the ALADIN errors are not correlated between differ-

ent levels; this means that we cannot use the ALADIN

profiles in the computation of the covariance inflation

factor.

The test period covered November and December

2004 and January 2005, with hourly assimilation simu-

lation cycles, representing around 2200 eight-hour sim-

ulations. Here, 186 h of LVP conditions were observed

during these months. Fog and low-cloud conditions were

more frequent late at night and early in the morning and

were less frequent during the afternoons. Observations

were available only for heights ranging from 1 to 30 m, so

when using real observations, the impact of the EnKF

on the model was assessed only in terms of the quality

of LVP condition forecasts.

a. LVP conditions forecast

Tables 3 and 4 display the mean HR and pseudo-FAR

of LVP conditions for various forecast times for the

REAL case.

Both HR and pseudo-FAR were slightly improved by

ENKF32 as compared to REAL for forecast times be-

tween 1 and 3 h. Beyond that, there was not much

change. This shows that the initial conditions had a

smaller impact on the quality of the fog forecasts when

real observations were used compared to when simu-

lated observations were used. The influence of errors in

both the model and the mesoscale forcings was larger

than the influence of initial conditions beyond the first

3 h of forecast time. This matches the conclusions of

Roquelaure and Bergot (2007), who showed that errors

on the initial conditions have more impact for forecast

times smaller than 3 h, and that errors on mesoscale

forcings have more impact for larger forecast times.

b. Onset and burn off of LVP events

Tables 5 and 6 show the error of the predicted time of

onset and burn off for all simulation and forecast times.

Simulations in which fog was present at initialization

were discarded when computing the score for fog onset,

for the same reasons as mentioned before.

ENKF32 brought a small improvement as compared

to REAL for the forecast of the LVP onset time. There

FIG. 12. Background error correlations in the as computed by the 32-member ensemble for FOG of (top) temperature

and (bottom) temperature with specific humidity on day (left) 6 at 0700 UTC and (right) day 4 at 1200 UTC.
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were around 10% more cases of small errors (between

0 and 90 min) and 10% fewer with errors larger than

360 min. On the other hand, ENKF32 did not improve

the forecast of burn-off times much. The EnKF had less

impact on the forecast of fog burn-off times because for

most of the cases fog was already present at initialization

time. For these cases, the burn-off time depended mainly

on the initial thickness of the fog layer and on the fore-

casted soil temperature and water content. Their values

were weakly correlated with initial profiles of tempera-

ture and humidity.

6. Impact of the ensemble size

In all previous experiments, the EnKF was run with

a 32-member ensemble. Here, the EnKF was run with

smaller ensembles, 8 members (experiment ENKF8)

and 16 members (ENKF16). The consequence of smaller

ensembles is a smaller spread and a poorer description of

the variance–covariance matrix by the ensemble. For this

reason, smaller ensembles increase the risk of filter di-

vergence.

a. Simulated observations

Figure 13 shows the RMSE of the initial profiles of

temperature and specific humidity for ENKF8 and

ENKF16 for all simulations as a percentage of the

RMSEs obtained with ENKF32 for FOG and NEAR-

FOG. For NEAR-FOG, the size of the ensemble had

a mostly positive impact on the RMSE of initial specific

humidity and a mostly negative one on temperature. For

FOG, a larger ensemble brought no improvement. For

both FOG and NEAR-FOG, the size of the ensemble

had a more positive impact on specific humidity than on

temperature. This can be explained by the characteris-

tics of the ensemble. For temperature, the spread of 8-,

16-, and 32-member ensembles was large enough. In this

case, adding new members did not bring much more

information on the error statistics. For specific humidity,

the ensemble spread was slightly insufficient, smaller for

ENKF8 than for ENKF16 and smaller for ENKF16 than

for ENKF32. In this case, adding new members was useful.

Overall, increasing the size of the ensemble did not

greatly improve the initial conditions. This is because

the adaptive covariance inflation algorithm compen-

sated for the smaller spreads caused by smaller ensem-

bles. Figure 14 shows the mean covariance inflation

factor for temperature and specific humidity versus

simulation time, for NEAR-FOG (Figs. 14a,b) and FOG

(Figs. 14c,d). For both situations, the covariance in-

flation factors were larger for ENKF8 than for ENKF16

and also larger for ENKF16 than for ENKF32. A

smaller spread of the ensemble resulted in larger co-

variance inflation. For temperature (Figs. 14a,c), the

covariance inflation factor followed a strong diurnal

cycle for NEAR-FOG and a slightly less marked one for

FOG. This diurnal cycle corresponded to a diurnal cycle

of the temperature covariances. During the day, the

differences among the N analyses were greater than

among the N backgrounds, as the forward integration by

the model erased the perturbations to produce neutral

or unstable stratified profiles. In contrast, during the

night the atmosphere was stable and the perturbations

of the analysis were better preserved by the forward

integration in this case. In consequence, the spread of

the ensemble of N backgrounds was larger for temper-

ature during the night than during the day, and the co-

variance inflation compensated for this with larger

values during the day. This phenomenon was less

marked for FOG than for NEAR-FOG, because the

atmosphere was less often unstable during the day and

less often stable during the night because of the more

frequent occurrence of fog.

TABLE 3. HR of LVP conditions for various forecast times for

the REAL situation and for the REF, ENKF8, ENKF16, and

ENKF32 experiments.

1 h 2 h 3 h 4 h 6 h 8 h All

REF 0.78 0.62 0.64 0.61 0.59 0.52 0.63

ENKF8 0.73 0.60 0.59 0.54 0.55 0.52 0.60

ENKF16 0.75 0.64 0.67 0.60 0.58 0.50 0.63

ENKF32 0.78 0.66 0.70 0.61 0.59 0.52 0.64

TABLE 4. Pseudo-FAR of LVP conditions for various forecast

times for the REAL situation and for the REF, ENKF8, ENKF16,

and ENKF32 experiments.

1 h 2 h 3 h 4 h 6 h 8 h All

REF 0.25 0.41 0.48 0.47 0.48 0.53 0.46

ENKF8 0.28 0.42 0.50 0.50 0.51 0.50 0.46

ENKF16 0.26 0.40 0.46 0.48 0.50 0.51 0.46

ENKF32 0.23 0.38 0.43 0.48 0.50 0.53 0.45

TABLE 5. Number of simulations falling into the error intervals

(min) for the prediction of the onset of fog events during REAL.

No. No. No. No. No. No. No.

REF 28 26 22 28 16 18 68

ENKF32 30 28 24 28 12 22 62

TABLE 6. As in Table 5, but for the prediction of burn-off time.

Min 0–5 15–45 45–90 90–180 180–240 240–360 .360

REF (No.) 48 28 26 24 10 10 32

ENKF32

(No.)

50 16 20 44 8 4 38
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The specific humidity covariance inflation factor

(Figs. 14b,d) had much higher values for NEAR-FOG as

compared to FOG. This was probably due to the higher

frequency of saturated profiles in the prior ensemble and

in the observations. When profiles are saturated, the

simulated observations and the ensemble mean are very

close, which removes the need for covariance inflation.

The high values of the specific covariance inflation fac-

tor for NEAR-FOG were linked to the smaller spread

mentioned before (see Fig. 6c). This shows that the

adaptive covariance algorithm is an indispensable and

efficient tool for preventing filter divergence. It allows

runs with rather small-sized ensembles when using

simulated observations.

b. Real observations

Tables 3 and 4 show HR and pseudo-FAR of LVP

conditions versus forecast time for ENKF8, ENKF16,

and ENKF32 in the REAL situation. For both HR and

FAR, the size of the ensemble had a significant impact

on the scores. The impact was smaller for forecast times

longer than 4 h. This shows that the ensemble size

matters more with real observations than with simulated

observations, especially for the first few hours of the

forecast. The covariance inflation (Figs. 14e,f) was small

for temperature and very small for specific humidity. It

could be because the covariance inflation factor was

computed without using the ALADIN profiles when

using real observations. Because of model error, more

members were needed to build a reliable ensemble and

covariance inflation seemed to be less efficient when

using real observations. A larger ensemble is needed

when real observations were used, as compared to sim-

ulations using simulated observations.

7. Summary and discussion

Fog is a physical phenomenon that remains particu-

larly difficult to forecast. To render a 1D approach

useful, local observations have to be used to provide

accurate initial profiles. A simple diagnosis showed that

the error correlations of the background depended on

the stability of the atmosphere. Also, this study showed

that correlations between temperature and specific hu-

midity errors in the background could not be ignored.

These insights led to the implementation of an ensemble

Kalman filter, which allowed it to dynamically estimate

the background error statistics. With simulated obser-

vations, the EnKF brought a marked improvement in

the initial and forecasted temperature and specific hu-

midity. It also greatly improved the quality of the fore-

cast of fog events, in terms of hit ratio and pseudo–false

alarm rates. It increased the accuracy in forecasting the

FIG. 13. RMSE of initial temperature (black) and specific

humidity (gray) of ENKF8 (continuous line) and of ENKF16

(dashed line) as a percentage of the ENKF32 RMSE for (a)

NEAR-FOG and (b) FOG.
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onset and burn-off times of LVP conditions, which is the

result that matters most to the airports. The impact of

cross correlations was shown to be mostly positive.

Simulated observations constitute a very different

framework from real observations. The fact that the

model error was avoided with simulated observation

allowed a better understanding of the sources of error at

initialization and of the relations between the initial and

the forecast profiles. Using real observations, the EnKF

brought an improvement in the forecast of fog for

forecast times shorter than 3 h. The scores were left

unchanged for larger forecast hours. The forecast of

the onset time of LVP conditions was also improved.

The scores on the burn-off time were not, but the fact

that liquid water was often present at initialization time

for these simulations hid the impact of the EnKF. When

real observations were used, the model and mesoscale-

forcing errors were added to the initial condition errors,

also present with simulated observations, so that the

influence of the initial condition errors on the forecast

was relatively smaller in that case. Furthermore, model

errors are not taken into account in the version of the

BLUE algorithm that was used. They are notably hard

to estimate. A possible method is to build a multischeme

ensemble, using different physical parameterizations

(e.g., turbulence, microphysics, and radiation scheme).

Overall, despite this limitation, which is intrinsic to the

model, the EnKF is an interesting assimilation scheme

for the forecasting of radiation fog events.

The ensemble size was more correlated to the quality

of the initial conditions and forecasts with real obser-

vations than with simulated observations. With simu-

lated observations, the covariance inflation algorithm

managed to compensate for the lack of spread of smaller

ensembles and allowed us to run the EnKF with satis-

factory results with an ensemble of only eight members.

When using real observations, a larger ensemble is

needed. The EnKF works well within a 1D approach

with relatively few members, which renders its use

possible in an operational context.

Several studies have shown that for strongly nonlinear

systems such as a 1D model, an alternative to variational

and Kalman filtering methods exists: the particle filter.

This assimilation scheme does not need any Gaussian

FIG. 14. (left) Mean temperature and (right) specific humidity covariance inflation factor vs simulation time for

(a),(b) NEAR-FOG, (c),(d) FOG, and (e),(f) REAL. Covariance inflation factors computed for ENKF8 are plotted

as a dashed line, for ENKF16 as a dotted line, and for ENKF32 as a continuous line.
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assumption and has been shown to work well with the-

oretical chaotic systems such as the Lorenz system.

Work is ongoing on this promising method.
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